ترغب بنشر مسار تعليمي؟ اضغط هنا

We analyze how the magnetic disorder affects the properties of the two-band $s_pm$ and $s_{++}$ models, which are subject of hot discussions regarding iron-based superconductors and other multiband systems like MgB$_2$. We show that there are several cases when the transition temperature $T_c$ is not fully suppressed by magnetic impurities in contrast to the Abrikosov-Gorkov theory, but a saturation of $T_c$ takes place in the regime of strong disorder. These cases are: (1) the purely interband impurity scattering, (2) the unitary scattering limit. We show that in the former case the $s_pm$ gap is preserved, while the $s_{++}$ state transforms into the $s_pm$ state with increasing magnetic disorder. For the case (2), the gap structure remains intact.
We present theory of dc Josephson effect in contacts between Fe-based and spin-singlet $s$-wave superconductors. The method is based on the calculation of temperature Greens function in the junction within the tight-binding model. We calculate the ph ase dependencies of the Josephson current for different orientations of the junction relative to the crystallographic axes of Fe-based superconductor. Further, we consider the dependence of the Josephson current on the thickness of an insulating layer and on temperature. Experimental data for PbIn/Ba$_{1-x}$K$_{x}$(FeAs)$_2$ point-contact Josephson junctions are consistent with theoretical predictions for $s_{pm}$ symmetry of an order parameter in this material. The proposed method can be further applied to calculations of the dc Josephson current in contacts with other new unconventional multiorbital superconductors, such as $Sr_2RuO_4$ and superconducting topological insulator $Cu_xBi_2Se_3$.
We investigate effects of disorder on the density of states, the single particle response function and optical conductivity in multiband superconductors with s_{+-} symmetry of the order parameter, where s_{+-} -> s_{++} transition may take place. In the vicinity of the transition the superconductive gapless regime is realized. It manifests itself in anomalies in the above mentioned properties. As a result, intrinsically phase-insensitive experimental methods like ARPES, tunneling and terahertz spectroscopy may be used for revealing of information about the underlying order parameter symmetry.
We investigate superconductor/insulator/ferromagnet/superconductor (SIFS) tunnel Josephson junctions in the dirty limit, using the quasiclassical theory. We consider the case of a strong tunnel barrier such that the left S layer and the right FS bila yer are decoupled. We calculate quantitatively the density of states (DOS) in the FS bilayer for arbitrary length of the ferromagnetic layer, using a self-consistent numerical method. We compare these results with a known analytical DOS approximation, which is valid when the ferromagnetic layer is long enough. Finally we calculate quantitatively the current-voltage characteristics of a SIFS junction.
We consider a two-band superconductor with relative phase $pi $ between the two order parameters as a model for the superconducting state in ferropnictides. Within this model we calculate the microwave response and the NMR relaxation rate. The influe nce of intra- and interband impurity scattering beyond the Born and unitary limits is taken into account. We show that, depending on the scattering rate, various types of power law temperature dependencies of the magnetic field penetration depth and the NMR relaxation rate at low temperatures may take place.
In this paper we discuss the normal and superconducting state properties of two pnictide superconductors, LaOFeAs and LaONiAs, using Migdal-Eliashberg theory and density functional perturbation theory. For pure LaOFeAs, the calculated electron-phonon coupling constant $lambda=0.21$ and logarithmic-averaged frequency $omega_{ln}=206 K$, give a maximum $T_c$ of 0.8 K, using the standard Migdal-Eliashberg theory. Inclusion of multiband effects increases the Tc only marginally. To reproduce the experimental $T_c$, a 5-6 times larger coupling constant would be needed. Our results indicate that standard electron-phonon coupling is not sufficient to explain superconductivity in the whole family of Fe-As based superconductors. At the same time, the electron-phonon coupling in Ni-As based compounds is much stronger and its normal and superconducting state properties can be well described by standard Migdal-Eliashberg theory.
The theory of Andreev conductance is formulated for junctions involving normal metals (N) and multiband superconductors (S) and applied to the case of superconductors with nodeless extended $s_{pm}$-wave order parameter symmetry, as possibly realized in the recently discovered ferro pnictides. We find qualitative differences from tunneling into s-wave or d-wave superconductors that may help to identify such a state. First, interband interference leads to a suppression of Andreev reflection in the case of a highly transparent N/S interface and to a current deficit in the tunneling regime. Second, surface bound states may appear, both at zero and at non-zero energies. These effects do not occur in multiband superconductors without interband sign reversal, though the interference can still strongly modify the conductance spectra.
We investigate superconductor/insulator/ferromagnet/superconductor (SIFS) tunnel Josephson junctions in the dirty limit, using the quasiclassical theory. We formulate a quantitative model describing the oscillations of critical current as a function of thickness of the ferromagnetic layer and use this model to fit recent experimental data. We also calculate quantitatively the density of states (DOS) in this type of junctions and compare DOS oscillations with those of the critical current.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا