ﻻ يوجد ملخص باللغة العربية
We analyze how the magnetic disorder affects the properties of the two-band $s_pm$ and $s_{++}$ models, which are subject of hot discussions regarding iron-based superconductors and other multiband systems like MgB$_2$. We show that there are several cases when the transition temperature $T_c$ is not fully suppressed by magnetic impurities in contrast to the Abrikosov-Gorkov theory, but a saturation of $T_c$ takes place in the regime of strong disorder. These cases are: (1) the purely interband impurity scattering, (2) the unitary scattering limit. We show that in the former case the $s_pm$ gap is preserved, while the $s_{++}$ state transforms into the $s_pm$ state with increasing magnetic disorder. For the case (2), the gap structure remains intact.
Superconductivity in the heavy-fermion compound CeCu2Si2 is a prototypical example of Cooper pairs formed by strongly correlated electrons. For more than 30 years, it has been believed to arise from nodal d-wave pairing mediated by a magnetic glue. H
Several experimental studies have shown the presence of spatially inhomogeneous phase coexistence of superconducting and non superconducting domains in low dimensional organic superconductors. The superconducting properties of these systems are found
We consider a problem of superconductivity coexistence with the spin-density-wave order in disordered multiband metals. It is assumed that random variations of the disorder potential on short length scales render the interactions between electrons to
The effective superconducting penetration depth measured in the vortex state of PrOs4Sb12 using transverse-field muon spin rotation (TF-muSR) exhibits an activated temperature dependence at low temperatures, consistent with a nonzero gap for quasipar
The thermal conductivity of the layered s-wave superconductor NbSe_2 was measured down to T_c/100 throughout the vortex state. With increasing field, we identify two regimes: one with localized states at fields very near H_c1 and one with highly delo