ﻻ يوجد ملخص باللغة العربية
The theory of Andreev conductance is formulated for junctions involving normal metals (N) and multiband superconductors (S) and applied to the case of superconductors with nodeless extended $s_{pm}$-wave order parameter symmetry, as possibly realized in the recently discovered ferro pnictides. We find qualitative differences from tunneling into s-wave or d-wave superconductors that may help to identify such a state. First, interband interference leads to a suppression of Andreev reflection in the case of a highly transparent N/S interface and to a current deficit in the tunneling regime. Second, surface bound states may appear, both at zero and at non-zero energies. These effects do not occur in multiband superconductors without interband sign reversal, though the interference can still strongly modify the conductance spectra.
Disorder - impurities and defects violating an ideal order - is always present in solids. It can result in interesting and sometimes unexpected effects in multiband superconductors. Especially if the superconductivity is unconventional thus having ot
As charge carriers traverse a single superconductor ferromagnet interface they experience an additional spin-dependent phase angle which results in spin mixing and the formation of a bound state called the Andreev Bound State. This state is an essent
Andreev bound states at boundaries of d-wave superconductors are strongly influenced by the boundary geometry itself. In this work, the zero-energy spectral weight of the local quasiparticle density of states is presented for the case of wedge-shaped
We consider a problem of superconductivity coexistence with the spin-density-wave order in disordered multiband metals. It is assumed that random variations of the disorder potential on short length scales render the interactions between electrons to
The helical electron states on the surface of topological insulators or elemental Bismuth become unstable toward superconducting pairing formation when coupled to the charge or magnetic fluctuations. The latter gives rise to pairing instability in ch