ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a complete analysis of the imprint of tensor anisotropies on the Cosmic Microwave Background for a class of f(R) gravity theories within the PPF-CAMB framework. We derive the equations, both for the cosmological background and gravitationa l wave perturbations, required to obtain the standard temperature and polarization power spectra, taking care to include all effects which arise from f(R) modifications of both the background and the perturbation equations. For R^n gravity, we show that for n different from 2, the initial conditions in the radiation dominated era are the same as those found in General Relativity. We also find that by doing simulations which involve either modifying the background evolution while keeping the perturbation equations fixed or fixing the background to be the Lambda-CDM model and modifying the perturbation equations, the dominant contribution to deviations from General Relativity in the temperature and polarization spectra can be attributed to modifications in the background. This demonstrates the importance of using the correct background in perturbative studies of f(R) gravity. Finally an enhancement in the B-modes power spectra is observed which may allow for lower inflationary energy scales.
We present a study of the Galactic Center region as a possible source of both secondary gamma-ray and neutrino fluxes from annihilating dark matter. We have studied the gamma-ray flux observed by the High Energy Stereoscopic System (HESS) from the J1 745-290 Galactic Center source. The data are well fitted as annihilating dark matter in combination with an astrophysical background. The analysis was performed by means of simulated gamma spectra produced by Monte Carlo event generators packages. We analyze the differences in the spectra obtained by the various Monte Carlo codes developed so far in particle physics. We show that, within some uncertainty, the HESS data can be fitted as a signal from a heavy dark matter density distribution peaked at the Galactic Center, with a power-law for the background with a spectral index which is compatible with the Fermi-Large Area Telescope (LAT) data from the same region. If this kind of dark matter distribution generates the gamma-ray flux observed by HESS, we also expect to observe a neutrino flux. We show prospective results for the observation of secondary neutrinos with the Astronomy with a Neutrino Telescope and Abyss environmental RESearch project (ANTARES), Ice Cube Neutrino Observatory (Ice Cube) and the Cubic Kilometer Neutrino Telescope (KM3NeT). Prospects solely depend on the device resolution angle when its effective area and the minimum energy threshold are fixed.
In General Relativity without a cosmological constant a non-positive contribution from the space-time geometry to Raychaudhuri equation is found provided that particular energy conditions are assumed and regardless the considered solution of the Eins teins equations. This fact is usually interpreted as a manifestation of the attractive character of gravity. Nevertheless, a positive contribution to Raychaudhuri equation from space-time geometry should occur since this is the case in an accelerated expanding Robertson-Walker model for congruences followed by fundamental observers. Modified gravity theories provide the possibility of a positive contribution although the standard energy conditions are assumed. We address this important issue in the context of f(R) theories, deriving explicit upper bounds for the contribution of space-time geometry to the Raychaudhuri equation. Then, we examine the parameter constraints for some paradigmatic f(R) models in order to ensure a positive contribution to this equation. Furthermore, we consider the implications of these upper bounds in the equivalent formulation of f(R) theories as a Brans-Dicke model.
77 - F. D. Albareti 2012
We study the accelerated expansion of the Universe through its consequences on a congruence of geodesics. We make use of the Raychaudhuri equation which describes the evolution of the expansion rate for a congruence of timelike or null geodesics. In particular, we focus on the space-time geometry contribution to this equation. By straightforward calculation from the metric of a Robertson-Walker cosmological model, it follows that in an accelerated expanding Universe the space-time contribution to the Raychaudhuri equation is positive for the fundamental congruence, favoring a non-focusing of the congruence of geodesics. However, the accelerated expansion of the present Universe does not imply a tendency of the fundamental congruence to diverge. It is shown that this is in fact the case for certain congruences of timelike geodesics without vorticity. Therefore, the focusing of geodesics remains feasible in an accelerated expanding Universe. Furthermore, a negative contribution to the Raychaudhuri equation from space-time geometry which is usually interpreted as the manifestation of the attractive character of gravity is restored in an accelerated expanding Robertson-Walker space-time at high speeds.
Along this review, we focus on the study of several properties of modified gravity theories, in particular on black-hole solutions and its comparison with those solutions in General Relativity, and on Friedmann-Lemaitre-Robertson-Walker metrics. The thermodynamical properties of fourth order gravity theories are also a subject of this investigation with special attention on local and global stability of paradigmatic f(R) models. In addition, we revise some attempts to extend the Cardy-Verlinde formula, including modified gravity, where a relation between entropy bounds is obtained. Moreover, a deep study on cosmological singularities, which appear as a real possibility for some kind of modified gravity theories, is performed, and the validity of the entropy bounds is studied.
Annihilation of different dark matter (DM) candidates into Standard Model (SM) particles could be detected through their contribution to the gamma ray fluxes that are measured on the Earth. The magnitude of such contributions depends on the particula r DM candidate, but certain imprints of produced photon spectra may be analyzed in a model-independent fashion. In this work we provide the fitting formulae for the photon spectra generated by WIMP annihilation into quarks, leptons and gauge bosons channels in a wide range of WIMP masses.
In this work we provide the fitting formula valid for the simulated photon spectra from WIMP annihilation into light quark-anti quark (qq-) channels in a wide range of WIMP masses. We illustrate our results for the cc- channel.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا