ترغب بنشر مسار تعليمي؟ اضغط هنا

On the non-attractive character of gravity in f(R) theories

46   0   0.0 ( 0 )
 نشر من قبل Franco Albareti
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In General Relativity without a cosmological constant a non-positive contribution from the space-time geometry to Raychaudhuri equation is found provided that particular energy conditions are assumed and regardless the considered solution of the Einsteins equations. This fact is usually interpreted as a manifestation of the attractive character of gravity. Nevertheless, a positive contribution to Raychaudhuri equation from space-time geometry should occur since this is the case in an accelerated expanding Robertson-Walker model for congruences followed by fundamental observers. Modified gravity theories provide the possibility of a positive contribution although the standard energy conditions are assumed. We address this important issue in the context of f(R) theories, deriving explicit upper bounds for the contribution of space-time geometry to the Raychaudhuri equation. Then, we examine the parameter constraints for some paradigmatic f(R) models in order to ensure a positive contribution to this equation. Furthermore, we consider the implications of these upper bounds in the equivalent formulation of f(R) theories as a Brans-Dicke model.

قيم البحث

اقرأ أيضاً

Taking advantage of the conformal equivalence of f(R) theories of gravity with General Relativity coupled to a scalar field we generalize the Israel junction conditions for this class of theories by direct integration of the field equations. We sugge st a specific non-minimal coupling of matter to gravity which opens the possibility of a new class of braneworld scenarios.
In literature there is a model of modified gravity in which the matter Lagrangian is coupled to the geometry via trace of the stress-energy momentum tensor $T=T_{mu}^{mu}$. This type of modified gravity is called as $f(R,T)$ in which $R$ is Ricci sca lar $R=R_{mu}^{mu}$. We extend manifestly this model to include the higher derivative term $Box R$. We derived equation of motion (EOM) for the model by starting from the basic variational principle. Later we investigate FLRW cosmology for our model. We show that de Sitter solution is unstable for a generic type of $f(R,Box R, T)$ model. Furthermore we investigate an inflationary scenario based on this model. A graceful exit from inflation is guaranteed in this type of modified gravity.
We focus on a series of $f(R)$ gravity theories in Palatini formalism to investigate the probabilities of producing the late-time acceleration for the flat Friedmann-Robertson-Walker (FRW) universe. We apply statefinder diagnostic to these cosmologic al models for chosen series of parameters to see if they distinguish from one another. The diagnostic involves the statefinder pair ${r,s}$, where $r$ is derived from the scale factor $a$ and its higher derivatives with respect to the cosmic time $t$, and $s$ is expressed by $r$ and the deceleration parameter $q$. In conclusion, we find that although two types of $f(R)$ theories: (i) $f(R) = R + alpha R^m - beta R^{-n}$ and (ii) $f(R) = R + alpha ln R - beta$ can lead to late-time acceleration, their evolutionary trajectories in the $r-s$ and $r-q$ planes reveal different evolutionary properties, which certainly justify the merits of statefinder diagnostic. Additionally, we utilize the observational Hubble parameter data (OHD) to constrain these models of $f(R)$ gravity. As a result, except for $m=n=1/2$ of (i) case, $alpha=0$ of (i) case and (ii) case allow $Lambda$CDM model to exist in 1$sigma$ confidence region. After adopting statefinder diagnostic to the best-fit models, we find that all the best-fit models are capable of going through deceleration/acceleration transition stage with late-time acceleration epoch, and all these models turn to de-Sitter point (${r,s}={1,0}$) in the future. Also, the evolutionary differences between these models are distinct, especially in $r-s$ plane, which makes the statefinder diagnostic more reliable in discriminating cosmological models.
A review of the new of the problem of dark energy using modified gravity approach is considered. An explanation of the difficulties facing modern cosmology is given and different approaches are presented. We show why some models of gravity may suffer of instabilities and how some are inconsistent with observations.
A complete analysis of the dynamics of the Hu-Sawicki modification to General Relativity is presented. In particular, the full phase-space is given for the case in which the model parameters are taken to be n=1, c1=1, and several stable de Sitter equ ilibrium points together with an unstable matter-like point are identified. We find that if the cosmological parameters are chosen to take on their Lambda CDM values today, this results in a universe which, until very low redshifts, is dominated by an equation of state parameter equal t1/3, leading to an expansion history very different from Lambda CDM. We demonstrate that this problem can be resolved by choosing Lambda CDM initial conditions at high redshifts and integrating the equations to the present day.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا