ترغب بنشر مسار تعليمي؟ اضغط هنا

Gamma-ray and neutrino fluxes from Heavy Dark Matter in the Galactic Center

462   0   0.0 ( 0 )
 نشر من قبل Viviana Gammaldi
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a study of the Galactic Center region as a possible source of both secondary gamma-ray and neutrino fluxes from annihilating dark matter. We have studied the gamma-ray flux observed by the High Energy Stereoscopic System (HESS) from the J1745-290 Galactic Center source. The data are well fitted as annihilating dark matter in combination with an astrophysical background. The analysis was performed by means of simulated gamma spectra produced by Monte Carlo event generators packages. We analyze the differences in the spectra obtained by the various Monte Carlo codes developed so far in particle physics. We show that, within some uncertainty, the HESS data can be fitted as a signal from a heavy dark matter density distribution peaked at the Galactic Center, with a power-law for the background with a spectral index which is compatible with the Fermi-Large Area Telescope (LAT) data from the same region. If this kind of dark matter distribution generates the gamma-ray flux observed by HESS, we also expect to observe a neutrino flux. We show prospective results for the observation of secondary neutrinos with the Astronomy with a Neutrino Telescope and Abyss environmental RESearch project (ANTARES), Ice Cube Neutrino Observatory (Ice Cube) and the Cubic Kilometer Neutrino Telescope (KM3NeT). Prospects solely depend on the device resolution angle when its effective area and the minimum energy threshold are fixed.



قيم البحث

اقرأ أيضاً

The Fermi Large Area Telescope observed an excess in gamma ray emission spectrum coming from the center of the Milky Way galaxy. This data reveals that a light Dark Matter (DM) candidate of mass in the range 31-40 GeV, dominantly decaying into $bbar b$ final state, can explain the presence of the observed bump in photon energy. We try to interpret this observed phenomena by sneutrino DM annihilation into pair of fermions in the Supersymmetric Inverse Seesaw Model (SISM). This model can also account for tiny non-zero neutrino masses satisfying existing neutrino oscillation data. We show that a Higgs portal DM in this model is in perfect agreement with this new interpretation besides satisfying all other existing collider, cosmological and low energy experimental constraints.
We incorporate Milky Way dark matter halo profile uncertainties, as well as an accounting of diffuse gamma-ray emission uncertainties in dark matter annihilation models for the Galactic Center Extended gamma-ray excess (GCE) detected by the Fermi Gam ma Ray Space Telescope. The range of particle annihilation rate and masses expand when including these unknowns. However, two of the most precise empirical determinations of the Milky Way halos local density and density profile leave the signal region to be in considerable tension with dark matter annihilation searches from combined dwarf galaxy analyses for single-channel dark matter annihilation models. The GCE and dwarf tension can be alleviated if: one, the halo is very highly concentrated or strongly contracted; two, the dark matter annihilation signal differentiates between dwarfs and the GC; or, three, local stellar density measures are found to be significantly lower, like that from recent stellar counts, increasing the local dark matter density.
Many models currently exist which attempt to interpret the excess of gamma rays emanating from the Galactic Center in terms of annihilating or decaying dark matter. These models typically exhibit a variety of complicated cascade mechanisms for photon production, leading to a non-trivial kinematics which obscures the physics of the underlying dark sector. In this paper, by contrast, we observe that the spectrum of the gamma-ray excess may actually exhibit an intriguing energy-duality invariance under $E_gamma rightarrow E_ast^2/E_gamma$ for some $E_ast$. As we shall discuss, such an energy duality points back to a remarkably simple alternative kinematics which in turn is realized naturally within the Dynamical Dark Matter framework. Observation of this energy duality could therefore provide considerable information about the properties of the dark sector from which the Galactic-Center gamma-ray excess might arise, and highlights the importance of acquiring more complete data for the Galactic-Center excess in the energy range around 1 GeV.
The extended excess toward the Galactic Center (GC) in gamma rays inferred from Fermi-LAT observations has been interpreted as being due to dark matter (DM) annihilation. Here, we perform new likelihood analyses of the GC and show that, when includin g templates for the stellar galactic and nuclear bulges, the GC shows no significant detection of a DM annihilation template, even after generous variations in the Galactic diffuse emission models and a wide range of DM halo profiles. We include Galactic diffuse emission models with combinations of three-dimensional inverse Compton maps, variations of interstellar gas maps, and a central source of electrons. For the DM profile, we include both spherical and ellipsoidal DM morphologies and a range of radial profiles from steep cusps to kiloparsec-sized cores, motivated in part by hydrodynamical simulations. Our derived upper limits on the dark matter annihilation flux place strong constraints on DM properties. In the case of the pure $b$-quark annihilation channel, our limits on the annihilation cross section are more stringent than those from the Milky Way dwarfs up to DM masses of approximately TeV and rule out the thermal relic cross section up to approximately 300 GeV. Better understanding of the DM profile, as well as the Fermi-LAT data at its highest energies, would further improve the sensitivity to DM properties.
We investigate different neutrino signals from the decay of dark matter particles to determine the prospects for their detection, and more specifically if any spectral signature can be disentangled from the background in present and future neutrino o bservatories. If detected, such a signal could bring an independent confirmation of the dark matter interpretation of the dramatic rise in the positron fraction above 10 GeV recently observed by the PAMELA satellite experiment and offer the possibility of distinguishing between astrophysical sources and dark matter decay or annihilation. In combination with other signals, it may also be possible to distinguish among different dark matter decay channels.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا