ترغب بنشر مسار تعليمي؟ اضغط هنا

We report Swift/BAT survey observations of the Tychos supernova remnant, performed over a period of 104 months since the missions launch. The remnant is detected with high significance (>10 sigma) below 50 keV. We detect significant hard X-ray emissi on in the 60-85 keV band, above the continuum level predicted by a simple synchrotron model. The location of the observed excess is consistent with line emission from radioactive Titanium-44, so far reported only for Type II supernova explosions. We discuss the implications of these results in the context of the galactic supernova rate, and nucleosynthesis in Type Ia supernova.
72 - P. Romano 2014
The duty cycle (DC) of astrophysical sources is generally defined as the fraction of time during which the sources are active. However, DCs are generally not provided with statistical uncertainties, since the standard approach is to perform Monte Car lo bootstrap simulations to evaluate them, which can be quite time consuming for a large sample of sources. As an alternative, considerably less time-consuming approach, we derived the theoretical expectation value for the DC and its error for sources whose state is one of two possible, mutually exclusive states, inactive (off) or flaring (on), as based on a finite set of independent observational data points. Following a Bayesian approach, we derived the analytical expression for the posterior, the conjugated distribution adopted as prior, and the expectation value and variance. We applied our method to the specific case of the inactivity duty cycle (IDC) for supergiant fast X-ray transients. We also studied IDC as a function of the number of observations in the sample. Finally, we compare the results with the theoretical expectations. We found excellent agreement with our findings based on the standard bootstrap method. Our Bayesian treatment can be applied to all sets of independent observations of two-state sources, such as active galactic nuclei, X-ray binaries, etc. In addition to being far less time consuming than bootstrap methods, the additional strength of this approach becomes obvious when considering a well-populated class of sources ($N_{rm src} geq 50$) for which the prior can be fully characterized by fitting the distribution of the observed DCs for all sources in the class, so that, through the prior, one can further constrain the DC of a new source by exploiting the information acquired on the DC distribution derived from the other sources. [Abridged]
162 - V. La Parola 2014
We have analyzed the Swift data relevant to the high mass X-ray binary Swift J1816.7-1613. The timing analysis of the BAT survey data unveiled a modulation at a period of P_0=118.5+/-0.8 days that we interpret as the orbital period of the X-ray binar y system. The modulation is due to a sequence of bright flares, lasting ~30 d, separated by long quiescence intervals. This behavior is suggestive of a Be binary system, where periodic or quasi-periodic outbursts are the consequence of an enhancement of the accretion flow from the companion star at the periastron passage. The position of Swift J1816.7-1613 on the Corbet diagram strengthens this hypothesis. The broad band 0.2-150 keV spectrum is well modeled with a strongly absorbed power-law with a flat photon index Gamma~ 0.2 and a cut-off at ~ 10 keV.
We report on the temporal and spectral properties of the HMXB IGR J16283-4838 in the hard X-ray band. We searched the first 88 months of Swift BAT survey data for long-term periodic modulations. We also investigated the broad band (0.2--150 keV) spec tral properties of IGR J16283--4838 complementing the BAT dataset with the soft X-ray data from the available Swift-XRT pointed observations. The BAT light curve of IGR J16283-4838 revealed a periodic modulation at P_o=287.6+7-1.7 days (with a significance higher than 4 standard deviations). The profile of the light curve folded at P_o shows a sharp peak lasting ~ 12 d, over a flat plateau. The long-term light curve shows also a ~300 d interval of prolonged enhanced emission. The observed phenomenology is suggestive of a Be nature of IGR J16283-4838, where the narrow periodic peaks and the ~300 d outburst can be interpreted as Type I and Type II outbursts, respectively. The broad band 0.2-150 keV spectrum can be described with an absorbed power-law and a steepening in the BAT energy range.
IGR J18219-1347 is a hard X-ray source discovered by INTEGRAL in 2010. We have analyzed the X-ray emission of this source exploiting the BAT survey data up to March 2012 and the XRT data that include also an observing campaign performed in early 2012 . The source is detected at a significance level of ~14 standard deviations in the 88-month BAT survey data, and shows a strong variability along the survey monitoring, going from high intensity to quiescent states. A timing analysis on the BAT data revealed an intensity modulation with a period of 72.46 days. The significance of this modulation is about 7 standard deviations in Gaussian statistics. We interpret it as the orbital period of the binary system. The light curve folded at P_0 shows a sharp peak covering ~30% of the period, superimposed to a flat level roughly consistent with zero. In the soft X-rays the source is detected only in 5 out of 12 XRT observations, with the highest recorded count rate corresponding to a phase close to the BAT folded light curve peak. The long orbital period and the evidence that the source emits only during a small fraction of the orbit suggests that the IGR J18219-1347 binary system hosts a Be star. The broad band XRT+BAT spectrum is well modeled with a flat absorbed power law with a high energy exponential cutoff at ~11 keV.
In the last years the hard X-ray astronomy has made a significant step forward, thanks to the monitoring of the IBIS/ISGRI telescope on board the INTEGRAL satellite and of the Burst Alert Telescope (BAT) on board of the Swift observatory. This has pr ovided a huge amount of novel information on many classes of sources. We have been exploiting the BAT survey data to study the variability and the spectral properties of the new high mass X-ray binary sources detected by INTEGRAL. In this letter we investigate the properties of IGR J015712-7259. We perform timing analysis on the 88-month BAT survey data and on the XRT pointed observations of this source. We also report on the broad-band 0.2-150 keV spectral analysis. We find evidence for a modulation of the hard-X-ray emission with period P_o=35.6 days. The significance of this modulation is 6.1 standard deviations. The broad band spectrum is modeled with an absorbed power law with photon index Gamma 0.4 and a steepening in the BAT energy range modeled with a cutoff at an energy of ~13 keV.}
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا