ترغب بنشر مسار تعليمي؟ اضغط هنا

Swift-BAT hard X-ray sky monitoring unveils the orbital period of the HMXB IGR J18219-1347

86   0   0.0 ( 0 )
 نشر من قبل Valentina La Parola
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

IGR J18219-1347 is a hard X-ray source discovered by INTEGRAL in 2010. We have analyzed the X-ray emission of this source exploiting the BAT survey data up to March 2012 and the XRT data that include also an observing campaign performed in early 2012. The source is detected at a significance level of ~14 standard deviations in the 88-month BAT survey data, and shows a strong variability along the survey monitoring, going from high intensity to quiescent states. A timing analysis on the BAT data revealed an intensity modulation with a period of 72.46 days. The significance of this modulation is about 7 standard deviations in Gaussian statistics. We interpret it as the orbital period of the binary system. The light curve folded at P_0 shows a sharp peak covering ~30% of the period, superimposed to a flat level roughly consistent with zero. In the soft X-rays the source is detected only in 5 out of 12 XRT observations, with the highest recorded count rate corresponding to a phase close to the BAT folded light curve peak. The long orbital period and the evidence that the source emits only during a small fraction of the orbit suggests that the IGR J18219-1347 binary system hosts a Be star. The broad band XRT+BAT spectrum is well modeled with a flat absorbed power law with a high energy exponential cutoff at ~11 keV.

قيم البحث

اقرأ أيضاً

103 - G. Cusumano , A. DA`i , A. Segreto 2020
We analysed 13 years of the Neil Gehrels Swift Observatory survey data collected on the High Mass X-ray Binary IGR J18214-1318. Performing the timing analysis we detected a periodic signal of 5.42 d. From the companion star characteristics we derived an average orbital separation of $sim 41 rm R_{odot}simeq 2 R_{star}$. The spectral type of the companion star (O9) and the tight orbital separation suggest that IGR~J18214-1318 is a wind accreting source with eccentricity lower than 0.17. The intensity profile folded at the orbital period shows a deep minimum compatible with an eclipse of the source by the companion star. In addition, we report on the broad-band 0.6--100 keV spectrum using data from XMM-Newton, NuSTAR, and Swift, applying self-consistent physical models. We find that the spectrum is well fitted either by a pure thermal Comptonization component, or, assuming that the source is a neutron star accreting above the critical regime, by a combined thermal and bulk-motion Comptonization model. In both cases, the presence of a local neutral absorption (possibly related to the thick wind of the companion star) is required.
We present the catalog of sources detected in the first 22 months of data from the hard X-ray survey (14--195 keV) conducted with the BAT coded mask imager on the swift satellite. The catalog contains 461 sources detected above the 4.8 sigma level wi th BAT. High angular resolution X-ray data for every source from Swift XRT or archival data have allowed associations to be made with known counterparts in other wavelength bands for over 97% of the detections, including the discovery of ~30 galaxies previously unknown as AGN and several new Galactic sources. A total of 266 of the sources are associated with Seyfert galaxies (median redshift z ~ 0.03) or blazars, with the majority of the remaining sources associated with X-ray binaries in our Galaxy. This ongoing survey is the first uniform all sky hard X-ray survey since HEAO-1 in 1977. Since the publication of the 9-month BAT survey we have increased the number of energy channels from 4 to 8 and have substantially increased the number of sources with accurate average spectra. The BAT 22-month catalog is the product of the most sensitive all-sky survey in the hard X-ray band, with a detection sensitivity (4.8 sigma) of 2.2e-11 erg/cm2/s (1 mCrab) over most of the sky in the 14--195 keV band.
We present the catalog of sources detected in 70 months of observations of the BAT hard X-ray detector on the Swift gamma-ray burst observatory. The Swift-BAT 70 month survey has detected 1171 hard X-ray sources (more than twice as many sources as th e previous 22 month survey) in the 14-195 keV band down to a significance level of 4.8 sigma, associated with 1210 counterparts. The 70 month Swift-BAT survey is the most sensitive and uniform hard X-ray all-sky survey and reaches a flux level of 1.03e-11 ergs/sec/cm2 over 50% of the sky and 1.34e-11 ergs/sec/cm2 over 90% of the sky. The majority of new sources in the 70 month survey continue to be AGN, with over 700 in the 70 month survey catalog. As part of this new edition of the Swift-BAT catalog, we also make available 8-channel spectra and monthly-sampled lightcurves for each object detected in the survey at the Swift-BAT 70 month website.
The Swift/Burst Alert Telescope (BAT) hard X-ray transient monitor provides near real-time coverage of the X-ray sky in the energy range 15-50 keV. The BAT observes 88% of the sky each day with a detection sensitivity of 5.3 mCrab for a full-day obse rvation and a time resolution as fine as 64 seconds. The three main purposes of the monitor are (1) the discovery of new transient X-ray sources, (2) the detection of outbursts or other changes in the flux of known X-ray sources, and (3) the generation of light curves of more than 900 sources spanning over eight years. The primary interface for the BAT transient monitor is a public web page. Between 2005 February 12 and 2013 April 30, 245 sources have been detected in the monitor, 146 of them persistent and 99 detected only in outburst. Among these sources, 17 were previously unknown and were discovered in the transient monitor. In this paper, we discuss the methodology and the data processing and filtering for the BAT transient monitor and review its sensitivity and exposure. We provide a summary of the source detections and classify them according to the variability of their light curves. Finally, we review all new BAT monitor discoveries; for the new sources that are previously unpublished, we present basic data analysis and interpretations.
In the last years the hard X-ray astronomy has made a significant step forward, thanks to the monitoring of the IBIS/ISGRI telescope on board the INTEGRAL satellite and of the Burst Alert Telescope (BAT) on board of the Swift observatory. This has pr ovided a huge amount of novel information on many classes of sources. We have been exploiting the BAT survey data to study the variability and the spectral properties of the new high mass X-ray binary sources detected by INTEGRAL. In this letter we investigate the properties of IGR J015712-7259. We perform timing analysis on the 88-month BAT survey data and on the XRT pointed observations of this source. We also report on the broad-band 0.2-150 keV spectral analysis. We find evidence for a modulation of the hard-X-ray emission with period P_o=35.6 days. The significance of this modulation is 6.1 standard deviations. The broad band spectrum is modeled with an absorbed power law with photon index Gamma 0.4 and a steepening in the BAT energy range modeled with a cutoff at an energy of ~13 keV.}
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا