ترغب بنشر مسار تعليمي؟ اضغط هنا

Context. The availability of asteroseismic constraints for a large sample of red giant stars from the CoRoT and Kepler missions paves the way for various statistical studies of the seismic properties of stellar populations. Aims. We use the first d etailed spectroscopic study of 19 CoRoT red-giant stars (Morel et al 2014) to compare theoretical stellar evolution models to observations of the open cluster NGC 6633 and field stars. Methods. In order to explore the effects of rotation-induced mixing and thermohaline instability, we compare surface abundances of carbon isotopic ratio and lithium with stellar evolution predictions. These chemicals are sensitive to extra-mixing on the red-giant branch. Results. We estimate mass, radius, and distance for each star using the seismic constraints. We note that the Hipparcos and seismic distances are different. However, the uncertainties are such that this may not be significant. Although the seismic distances for the cluster members are self consistent they are somewhat larger than the Hipparcos distance. This is an issue that should be considered elsewhere. Models including thermohaline instability and rotation-induced mixing, together with the seismically determined masses can explain the chemical properties of red-giants targets. However, with this sample of stars we cannot perform stringent tests of the current stellar models. Tighter constraints on the physics of the models would require the measurement of the core and surface rotation rates, and of the period spacing of gravity-dominated mixed modes. A larger number of stars with longer times series, as provided by Kepler or expected with Plato, would help for ensemble asteroseismology.
In the age of Kepler and Corot, extended observations have provided estimates of stellar pulsation frequencies that have achieved new levels of precision, regularly exceeding fractional levels of a few parts in $10^{4}$. These high levels of precisio n now in principle exceed the point where one can ignore the Doppler shift of pulsation frequencies caused by the motion of a star relative to the observer. We present a correction for these Doppler shifts and use previously published pulsation frequencies to demonstrate the significance of the effect. We suggest that reported pulsation frequencies should be routinely corrected for stellar line-of-sight velocity Doppler shifts, or if a line-of-sight velocity estimate is not available, the frame of reference in which the frequencies are reported should be clearly stated.
Regions of rapid variation in the internal structure of a star are often referred to as acoustic glitches since they create a characteristic periodic signature in the frequencies of p modes. Here we examine the localized disturbance arising from the helium second ionization zone in red giant branch and clump stars. More specifically, we determine how accurately and precisely the parameters of the ionization zone can be obtained from the oscillation frequencies of stellar models. We use models produced by three different generation codes that not only cover a wide range of stages of evolution along the red giant phase but also incorporate different initial helium abundances. We discuss the conditions under which such fits robustly and accurately determine the acoustic radius of the second ionization zone of helium. The determined radii of the ionization zones as inferred from the mode frequencies were found to be coincident with the local maximum in the first adiabatic exponent described by the models, which is associated with the outer edge of the second ionization zone of helium. Finally, we consider whether this method can be used to distinguish stars with different helium abundances. Although a definite trend in the amplitude of the signal is observed any distinction would be difficult unless the stars come from populations with vastly different helium abundances or the uncertainties associated with the fitted parameters can be reduced. However, application of our methodology could be useful for distinguishing between different populations of red giant stars in globular clusters, where distinct populations with very different helium abundances have been observed.
132 - T. Morel , A. Miglio , N. Lagarde 2014
A precise characterisation of the red giants in the seismology fields of the CoRoT satellite is a prerequisite for further in-depth seismic modelling. High-resolution FEROS and HARPS spectra were obtained as part of the ground-based follow-up campaig ns for 19 targets holding great asteroseismic potential. These data are used to accurately estimate their fundamental parameters and the abundances of 16 chemical species in a self-consistent manner. Some powerful probes of mixing are investigated (the Li and CNO abundances, as well as the carbon isotopic ratio in a few cases). The information provided by the spectroscopic and seismic data is combined to provide more accurate physical parameters and abundances. The stars in our sample follow the general abundance trends as a function of the metallicity observed in stars of the Galactic disk. After an allowance is made for the chemical evolution of the interstellar medium, the observational signature of internal mixing phenomena is revealed through the detection at the stellar surface of the products of the CN cycle. A contamination by NeNa-cycled material in the most massive stars is also discussed. With the asteroseismic constraints, these data will pave the way for a detailed theoretical investigation of the physical processes responsible for the transport of chemical elements in evolved, low- and intermediate-mass stars.
215 - T. Morel , A. Miglio , N. Lagarde 2012
A precise characterisation of the red giants in the seismology fields of the CoRoT satellite is a prerequisite for further in-depth seismic modelling. The optical spectra obtained for 19 targets have been used to accurately estimate their fundamental parameters and chemical composition. The extent of internal mixing is also investigated through the abundances of Li, CNO and Na (as well as 12C/13C in a few cases).
A set of long and nearly continuous observations of alpha Centauri A should allow us to derive an accurate set of asteroseismic constraints to compare to models, and make inferences on the internal structure of our closest stellar neighbour. We inten d to improve the knowledge of the interior of alpha Centauri A by determining the nature of its core. We combined the radial velocity time series obtained in May 2001 with three spectrographs in Chile and Australia: CORALIE, UVES, and UCLES. The resulting combined time series has a length of 12.45 days and contains over 10,000 data points and allows to greatly reduce the daily alias peaks in the power spectral window. We detected 44 frequencies that are in good overall agreement with previous studies, and found that 14 of these show possible rotational splittings. New values for the large and small separations have been derived. A comparison with stellar models indicates that the asteroseismic constraints determined in this study allows us to set an upper limit to the amount of convective-core overshooting needed to model stars of mass and metallicity similar to those of alpha Cen A.
The availability of precisely determined frequencies of radial and non-radial oscillation modes in red giants is finally paving the way for detailed studies of the internal structure of these stars. We look for the seismic signature of regions of sha rp structure variation in the internal structure of the CoRoT target HR7349. We analyse the frequency dependence of the large frequency separation and second frequency differences, as well as the behaviour of the large frequency separation obtained with the envelope auto-correlation function. We find evidence for a periodic component in the oscillation frequencies, i.e. the seismic signature of a sharp structure variation in HR7349. In a comparison with stellar models we interpret this feature as caused by a local depression of the sound speed that occurs in the helium second-ionization region. Using solely seismic constraints this allows us to estimate the mass (M=1.2^{+0.6}_{-0.4} Msun) and radius (R=12.2^{+2.1}_{-1.8} Rsun) of HR7349, which agrees with the location of the star in an HR diagram.
159 - M. Hareter , P. Reegen , A. Miglio 2010
A systematic search for gamma Dor and gamma Dor - delta Scuti hybrid pulsators was conducted on the CoRoT LRa01 Exo-archive yielding a total of 418 gamma Dor and 274 hybrid candidates. After an automatic jump correction 194 and 167 respectively, show no more obvious jumps and were investigated in more detail. For about 25% of these candidates classification spectra from the Anglo-Australian Observatory (AAO) are available. The detailed frequency analysis and a check for combination frequencies together with spectroscopic information allowed us to identify I) 34 gamma Dor stars which show very different pulsation spectra where mostly two modes dominate. Furthermore, a search for regularities in their oscillation spectra allowed to derive recurrent period spacings for 5 of these gamma Dor stars. II) 25 clear hybrid pulsators showing frequencies in the gamma Dor and delta Sct domain and are of A-F spectral type.
The information on stellar parameters and on the stellar interior we can get by studying pulsating stars depends crucially on the available observational constraints: both seismic constraints precision and number of detected modes, identification, na ture of the modes) and classical observations (photospheric abundances, effective temperature, luminosity, surface gravity). We consider the case of beta Cephei pulsators and, with the aim of estimating quantitatively how the available observational constraints determine the type and precision of our inferences, we set the stage for Hare&Hound exercises. In this contribution we present preliminary results for one simple case, where we assume as observed frequencies a subset of frequencies of a model and then evaluate a seismic merit function on a dense and extensive grid of models of B-type stars. We also compare the behaviour of chi^2 surfaces obtained with and without mode identification.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا