ترغب بنشر مسار تعليمي؟ اضغط هنا

Near-field energy coupling between two surfaces may arise from frustrated total-internal-reflectance and from atomic dipole-dipole interaction. Such an exchange of energy, if at resonance, greatly enhances the radiation transfer between an emitter an d a photovoltaic converter. Computational modeling of selected, but realizable, emitter and detector structures and materials shows the benefits of both near-field and resonance coupling (e.g., with ~ 100nm gaps). In one sense, this is almost an engineering paper. A strong computational model (based on physically-proven concepts and incorporating known and predicted high-temperature properties of acceptable emitter materials) is used to demonstrate the potential of materials (properly-selected to overcome natural limitations) and of structures (carefully crafted to push the limits of present technology) for breaking barriers of thermal conversion at lower-emitter temperatures (< 1000C).
A quantum-mechanical formulation of energy transfer between closely-spaced surfaces is given. Coupling between the two surfaces arises from the atomic dipole-dipole interaction involving transverse-photon exchange. The exchange of photons at resonanc e greatly enhances the radiation transfer. The spacing (distance) dependence is derived for the quantum well - quantum well situation. The interaction between two planar quantum wells, separated by a gap is found to be proportional to the 4th power of the wavelength-to-gapwidth ratio and to the radiation tunneling factor for the evanescent waves. Expressions for the net power transfer, in the near-field regime, from hot to cold surface for this case is given and evaluated for representative materials. Computational modeling of selected, but realizable, emitter and detector structures and materials shows the benefits of both near-field and resonance coupling (e.g., with 0.1 micron gaps).
Our study shows that the cross-section for fusion improves considerably if d-d pairs are located in linear (one-dimensional) chainlets or line defects. Such non-equilibrium defects can exist only in a solid matrix. Further, solids harbor lattice vibr ational modes (quanta, phonons) whose longitudinal-optical modes interact strongly with electrons and ions. One such interaction, resulting in potential inversion, causes localization of electron pairs on deuterons. Thus, we have attraction of D+ D- pairs and strong screening of the nuclear repulsion due to these local electron pairs (local charged bosons: acronym, lochons). This attraction and strong coupling permits low-energy deuterons to approach close enough to alter the standard equations used to define nuclear-interaction cross-sections. These altered equations not only predict that low-energy-nuclear reactions (LENR) of D+ D- (and H+ H-) pairs are possible, they predict that they are probable.
Space-grade Si and GaAs solar cells were irradiated with 15 and 40 MeV lithium ions. Dark-IV analysis (with and without illumination) reveals differences in the effects of such irradiation on the different cell types
Lochons (local charged bosons or local electron pairs) can form on D+ to give D- (bosonic ions) in Palladium Deuteride in the solid state. Such entities will occur at special sites or in linear channel owing to strong electron-phonon interaction or d ue to potential inversion on metallic electrodes. These lochons can catalyze D- - D+ fusion as a consequence of internal conversion leading to the formation of He-4 plus production of energy (Q=23.8 MeV) which is carried by the alpha particle and the ejected electron-pair. The reaction rate for this fusion process is calculated.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا