ترغب بنشر مسار تعليمي؟ اضغط هنا

I-V analysis of high-energy lithium-ion-irradiated Si and GaAs solar cells

150   0   0.0 ( 0 )
 نشر من قبل Andrew Meulenberg Jr.
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Space-grade Si and GaAs solar cells were irradiated with 15 and 40 MeV lithium ions. Dark-IV analysis (with and without illumination) reveals differences in the effects of such irradiation on the different cell types

قيم البحث

اقرأ أيضاً

Space-grade Si and GaAs solar cells were irradiated with 15 & 40 MeV Li ions. Illuminated (AM0 condition) and unilluminated I-V curves reveal that the effect of high-energy Li ion irradiation has produced similar effects to that of proton irradiation . However, an additional, and different, defect mechanism is suggested to dominate in the heavier-ion results. Comparison is made with proton-irradiated solar-cell work and with non-ionizing energy-loss (NIEL) radiation-damage models.
379 - Oki Gunawan , Tayfun Gokmen , 2014
Low open circuit voltage ($V_{OC}$) has been recognized as the number one problem in the current generation of Cu$_{2}$ZnSn(Se,S)$_{4}$ (CZTSSe) solar cells. We report high light intensity and low temperature Suns-$V_{OC}$ measurement in high perform ance CZTSSe devices. The Suns-$V_{OC}$ curves exhibit bending at high light intensity, which points to several prospective $V_{OC}$ limiting mechanisms that could impact the $V_{OC}$, even at 1 sun for lower performing samples. These V$_{OC}$ limiting mechanisms include low bulk conductivity (because of low hole density or low mobility), bulk or interface defects including tail states, and a non-ohmic back contact for low carrier density CZTSSe. The non-ohmic back contact problem can be detected by Suns-$V_{OC}$ measurements with different monochromatic illumination. These limiting factors may also contribute to an artificially lower $J_{SC}$-$V_{OC}$ diode ideality factor.
Triple junction (InGaP/GaAs/Ge) and single junction (SJ) solar cells were irradiated with electrons, protons and neutrons. The degradation of remaining factors was analyzed as function of the induced Displacement Damage Dose (DDD) calculated by means of the SR-NIEL (Screened Relativistic Non Ionizing Energy Loss) approach. In particular, the aim of this work is to analyze the variation of the solar cells remaining factors due to neutron irradiation with respect to those previously obtained with electrons and protons. The current analysis confirms that the degradation of the $P_{max}$ electrical parameter is related by means of the usual semi-empirical expression to the displacement dose, independently of type of the incoming particle. $I_{sc}$ and $V_{oc}$ parameters were also measured as a function of the displacement damage dose. Furthermore, a DLTS analysis was carried out on diodes - with the same epitaxial structure as the middle sub-cell - irradiated with neutrons.
The honeycomb connection of carbon atoms by covalent bonds in a macroscopic two-dimensional scale leads to fascinating graphene and solar cell based on graphene/silicon Schottky diode has been widely studied. For solar cell applications, GaAs is supe rior to silicon as it has a direct band gap of 1.42 eV and its electron mobility is six times of that of silicon. However, graphene/GaAs solar cell has been rarely explored. Herein, we report graphene/GaAs solar cells with conversion efficiency (Eta) of 10.4% and 15.5% without and with anti-reflection layer on graphene, respectively. The Eta of 15.5% is higher than the state of art efficiency for graphene/Si system (14.5%). Furthermore, our calculation points out Eta of 25.8% can be reached by reasonably optimizing the open circuit voltage, junction ideality factor, resistance of graphene and metal/graphene contact. This research strongly support graphene/GaAs hetero-structure solar cell have great potential for practical applications.
130 - T. P. Davis 2020
The T91 grade and similar 9Cr tempered-martensitic steels (also known as ferritic-martensitic) are leading candidate structural alloys for fast fission nuclear and fusion power reactors. At low temperatures (300 to 400 $^circ$C) neutron irradiation h ardens and embrittles these steels, therefore it is important to investigate the origin of this mode of life limiting property degradation. T91 steel specimens were separately neutron irradiated to 2.14 dpa at 327 $^circ$C and 8.82 dpa at 377 $^circ$C in the Idaho National Laboratory Advanced Test Reactor. Atom probe tomography was used to investigate the segregation driven formation of Mn-Ni-Si-rich (MNSPs) and Cu-rich (CRP) co-precipitates. The precipitates increase in size and, slightly, in volume fraction at the higher irradiation temperature and dose, while their corresponding compositions were very similar, falling near the Si(Mn,Ni) phase field in the Mn-Ni-Si projection of the Fe-based quaternary phase diagram. While the structure of the precipitates has not been characterized, this composition range is distinctly different than that of the typically cited G-phase. The precipitates are composed of CRP with MNSP appendages. Such features are often observed in neutron irradiated reactor pressure vessel (RPV) steels. However, the Si, Ni, Mn, P and Cu solutes concentrations are lower in the T91 than in typical RPV steels. Thus, in T91 precipitation primarily takes place in solute segregated regions of line and loop dislocations. These results are consistent with the model for radiation induced segregation driven precipitation of MNSPs proposed by Ke et al. Cr-rich alpha prime ($alpha$) phase formation was not observed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا