ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral selectivity from resonant-coupling in microgap-TPV

42   0   0.0 ( 0 )
 نشر من قبل Andrew Meulenberg Jr.
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Near-field energy coupling between two surfaces may arise from frustrated total-internal-reflectance and from atomic dipole-dipole interaction. Such an exchange of energy, if at resonance, greatly enhances the radiation transfer between an emitter and a photovoltaic converter. Computational modeling of selected, but realizable, emitter and detector structures and materials shows the benefits of both near-field and resonance coupling (e.g., with ~ 100nm gaps). In one sense, this is almost an engineering paper. A strong computational model (based on physically-proven concepts and incorporating known and predicted high-temperature properties of acceptable emitter materials) is used to demonstrate the potential of materials (properly-selected to overcome natural limitations) and of structures (carefully crafted to push the limits of present technology) for breaking barriers of thermal conversion at lower-emitter temperatures (< 1000C).

قيم البحث

اقرأ أيضاً

The dispersion properties of exciton polaritons in multiple-quantum-well based resonant photonic crystals are studied. In the case of structures with an elementary cell possessing a mirror symmetry with respect to its center, a powerful analytical me thod for deriving and analyzing dispersion laws of the respective normal modes is developed. The method is used to analyze band structure and dispersion properties of several types of resonant photonic crystals, which would not submit to analytical treatment by other approaches. These systems include multiple quantum well structures with an arbitrary periodic modulation of the dielectric function and structures with a complex elementary cell. Special attention was paid to determining conditions for superradiance (Bragg resonance) in these structures, and to the properties of the polariton stop band in the case when this condition is fulfilled (Bragg structures). The dependence of the band structure on the angle of propagation, the polarization of the wave, and the effects due to exciton homogeneous and inhomogeneous broadenings are considered, as well as dispersion properties of excitations in near-Bragg structures.
We demonstrate a selectively emitting optical Fabry-Perot resonator based on a few-nm-thin continuous metallic titanium nitride film, separated by a dielectric spacer from an optically thick titanium nitride back-reflector, which exhibits excellent s tability at 1070 K against chemical degradation, thin-film instabilities and melting point depression. The structure paves the way to the design and fabrication of refractory thermal emitters using the well-established processes known from the field of multilayer and rugate optical filters. We demonstrate that a few-nanometer thick films of titanium nitride can be stable under operation at temperatures exceeding 1070 K. This type of selective emitter provides a means towards near-infrared thermal emission that could potentially be tailored to the accuracy level known from rugate optical filters.
The interaction between excitons and phonons in semiconductor nanocrystals plays a crucial role in the exciton energy spectrum and dynamics, and thus in their optical properties. We investigate the exciton2 phonon coupling in giant-shell CdSe/CdS cor e-shell nanocrystals via resonant Raman spectroscopy. The Huang-Rhys parameter is evaluated by the intensity ratio of the longitudinal-optical (LO) phonon of CdS with its first multiscattering (2LO) replica. We used four different excitation wavelengths in the range from the onset of the CdS shell absorption to well above the CdS shell band edge to get insight into resonance effects of the CdS LO phonon with high energy excitonic transitions. The isotropic spherical giant-shell nanocrystals show consistently stronger exciton-phonon coupling as compared to the anisotropic rod-shaped dot-in-rod (DiR) architecture, and the 2LO/LO intensity ratio decreases for excitation wavelengths approaching the CdS band edge. The strong exciton-phonon coupling in the spherical giant-shell nanocrystals can be related to the delocalization of the electronic wave functions. Furthermore, we observe the radial breathing modes of the GS nanocrystals and their overtones by ultralow frequency Raman spectroscopy with nonresonant excitation, using laser energies well below the band gap of the heteronanocrystals, and highlight the differences between higher order
44 - Jozsef Garai 2009
Self-resonance in the atomic vibration occurs when the average wavelength of the phonon thermal vibration is equivalent or harmonic of the diameters of the atoms. It is suggested that applying pressure at temperature corresponding to the self-resonan ce should effectively reduce the number of vacancies. This theoretical prediction is tested on Niobium by measuring the magnetic susceptibility of the untreated and treated samples. The applied pressure-temperature treatment increased the critical temperature of Niobium by about 30 percent which was also accompanied with volume increase.
A water-based switchable frequency selective rasorber with polarization selectivity using the Great Wall structures is presented in this paper. The proposed structure comprises a container containing horizontal and vertical channels enabling dividabl e injection of water, and a cross-gap FSS. The novelty of the design lies in its switchability among four different operating states by injecting water or not into the water channels. When the container is empty, the structure acts as a polarization-intensive FSS with a -0.42 dB insertion loss passband at 3.75 GHz. When the horizontal channel is filled with water and there is no water in the vertical channel, this structure can be used as an FSR with single polarization selectivity. The FSR with -10 dB absorption band from 6.8 GHz to 18.8 GHz only allows certain polarized electromagnetic (EM) waves to pass at 3.1 GHz with an insertion loss of -0.78 dB, while another polarized EM wave cannot pass. When the container is full of water, the structure operates as an absorber with a reflection band below the absorption band, where neither of polarization EM waves can transmit. Besides, a reconfigurable water-based FSR automatic control system is built to achieve state switching and temperature constancy of the water within the container. Ultimately, a prototype of the presented design is fabricated, simulated and measured to verify the feasibility. This work has potential application in radome design to realize the out-of-band RCS reduction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا