ترغب بنشر مسار تعليمي؟ اضغط هنا

A proper determination of the abundance gradient in the Milky Way requires the observation of objects at large galactiocentric distances. With this aim, we are exploring the planetary nebula population towards the Galactic Anticentre. In this article , the discovery and physico-chemical study of a new planetary nebula towards the Anticentre direction, IPHASX J052531.19+281945.1 (PNG 178.1-04.0), is presented. The planetary nebula was discovered from the IPHAS survey. Long-slit follow-up spectroscopy was carried out to confirm its planetary nebula nature and to calculate its physical and chemical characteristics. The newly discovered planetary nebula turned out to be located at a very large galactocentric distance (D_GC=20.8+-3.8 kpc), larger than any previously known planetary nebula with measured abundances. Its relatively high oxygen abundance (12+log(O/H) = 8.36+-0.03) supports a flattening of the Galactic abundance gradient at large galactocentric distances rather than a linearly decreasing gradient.
The study of symbiotic stars is essential to understand important aspects of stellar evolution in interacting binaries. Their observed population in the Galaxy is however poorly known, and is one to three orders of magnitudes smaller than the predict ed population size. IPHAS, the INT Photometric Halpha survey of the Northern Galactic plane, gives us the opportunity to make a systematic, complete search for symbiotic stars in a magnitude-limited volume, and discover a significant number of new systems. A method of selecting candidate symbiotic stars by combining IPHAS and near-IR (2MASS) colours is presented. It allows us to distinguish symbiotic binaries from normal stars and most of the other types of Halpha emission line stars in the Galaxy. The only exception are T Tauri stars, which can however be recognized because of their concentration in star forming regions. Using these selection criteria, we discuss the classification of a list of 4338 IPHAS stars with Halpha in emission. 1500 to 2000 of them are likely to be Be stars. Among the remaining objects, 1183 fulfill our photometric constraints to be considered candidate symbiotic stars. The spectroscopic confirmation of three of these objects, which are the first new symbiotic stars discovered by IPHAS, proves the potential of the survey and selection method.
We introduce the log(Ha/[SII]6717+6731) vs. log(Ha/[NII]6583) (S2N2) diagnostic diagram as metallicity and ionisation parameter indicator for HII regions in external galaxies. The location of HII regions in the S2N2 diagram was studied both empirical ly and theoretically. We found that, for a wide range of metallicities, the S2N2 diagram gives single valued results in the metallicity-ionisation parameter plane. We demonstrate that the S2N2 diagram is a powerful tool to estimate metallicities of high-redshift (z ~ 2) HII galaxies. Finally, we derive the metallicity for 76 HII regions in M33 from the S2N2 diagram and calculate an O/H abundance gradient for this galaxy of -0.05 (+-0.01) dex kpc^-1.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا