ترغب بنشر مسار تعليمي؟ اضغط هنا

We show how two seemingly different theories with a scalar multiplicative coupling to electrodynamics are actually two equivalent parametrisations of the same theory: despite some differences in the interpretation of some phenemenological aspects of the parametrisations, they lead to the same physical observables. This is illustrated on the interpretation of observations of the Cosmic Microwave Background.
This paper proposes a systematic study of cosmological signatures of modifications of gravity via the presence of a scalar field with a multiplicative coupling to the electromagnetic Lagrangian. We show that, in this framework, variations of the fine structure constant, violations of the distance duality relation, evolution of the cosmic microwave background (CMB) temperature and CMB distortions are intimately and unequivocally linked. This enables one to put very stringent constraints on possible violations of the distance duality relation, on the evolution of the CMB temperature and on admissible CMB distortions using current constraints on the fine structure constant. Alternatively, this offers interesting possibilities to test a wide range of theories of gravity by analysing several datasets concurrently. We discuss results obtained using current data as well as some forecasts for future data sets such as those coming from EUCLID or the SKA.
In this communication, the current tests of gravitation available at Solar System scales are recalled. These tests rely mainly on two frameworks: the PPN framework and the search for a fifth force. Some motivations are given to look for deviations fr om General Relativity in other frameworks than the two extensively considered. A recent analysis of Cassini data in a MOND framework is presented. Furthermore, possibilities to constrain Standard Model Extension parameters using Solar System data are developed.
The MOdified Newtonian Dynamics (MOND) is an attempt to modify the gravitation theory to solve the Dark Matter problem. This phenomenology is very successful at the galactic level. The main effect produced by MOND in the Solar System is called the Ex ternal Field Effect parametrized by the parameter $Q_2$. We have used 9 years of Cassini range and Doppler measurements to constrain $Q_2$. Our estimate of this parameter based on Cassini data is given by $Q_2=(3 pm 3)times 10^{-27} rm{s^{-2}}$ which shows no deviation from General Relativity and excludes a large part of the relativistic MOND theories. This limit can also be interpreted as a limit on a external tidal potential acting on the Solar System coming from the internal mass of our galaxy (including Dark Matter) or from a new hypothetical body.
96 - A. Hees , P. Wolf , B. Lamine 2011
The laws of gravitation have been tested for a long time with steadily improving precision, leading at some moment of time to paradigmatic evolutions. Pursuing this continual effort is of great importance for science. In this communication, we focus on Solar System tests of gravity and more precisely on possible tests that can be performed with radio science observations (Range and Doppler). After briefly reviewing the current tests of gravitation at Solar System scales, we give motivations to continue such experiments. In order to obtain signature and estimate the amplitude of anomalous signals that could show up in radio science observables because of modified gravitational laws, we developed a new software that simulates Range/Doppler signals. We present this new tool that simulates radio science observables directly from the space-time metric. We apply this tool to the Cassini mission during its cruise from Jupiter to Saturn and derive constraints on the parameters entering alternative theories of gravity beyond the standard Parametrized Post Newtonian theory.
The Relativistic Motion Integrator (RMI) consists in integrating numerically the EXACT relativistic equations of motion, for a given metric (corresponding to a gravitational field at first post-Newtonian order or higher), instead of Newtonian equatio ns plus relativistic corrections. The aim of the present paper is to validate the method, and to illustrate how RMI can be used for space missions to produce relativistic ephemerides of test-bodies (or satellites). Indeed, nowadays, relativistic effects have to be taken into account, and comparing a RMI model with a classical keplerian one helps to quantify such effects. LISA is a relevant example to use RMI. A precise orbit model for the LISA spacecraft is needed not only for the sake of satellite ephemerides but also to compute the photon flight time in laser links between spacecraft, required in LISA data pre-processing in order to reach the gravitational wave detection level. Relativistic effects in LISA orbit model needed to be considered and quantified. Using RMI, we show that the numerical classical model for LISA orbits in the gravitational field of a non-rotating spherical Sun without planets can be wrong, with respect to the numerical relativisitic version of the same model, by as much as about ten kilometers in radial distance during a year and up to about 60 kilometers in along track distance after a year... with consequences on estimated photon flight times. We validated RMI numerical results with a 1PN analytical developpement.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا