ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraints on MOND theory from radio tracking data of the Cassini spacecraft

31   0   0.0 ( 0 )
 نشر من قبل Aur\\'elien Hees
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The MOdified Newtonian Dynamics (MOND) is an attempt to modify the gravitation theory to solve the Dark Matter problem. This phenomenology is very successful at the galactic level. The main effect produced by MOND in the Solar System is called the External Field Effect parametrized by the parameter $Q_2$. We have used 9 years of Cassini range and Doppler measurements to constrain $Q_2$. Our estimate of this parameter based on Cassini data is given by $Q_2=(3 pm 3)times 10^{-27} rm{s^{-2}}$ which shows no deviation from General Relativity and excludes a large part of the relativistic MOND theories. This limit can also be interpreted as a limit on a external tidal potential acting on the Solar System coming from the internal mass of our galaxy (including Dark Matter) or from a new hypothetical body.

قيم البحث

اقرأ أيضاً

Theories of gravity that obey the Weak Equivalence Principle have the same Parametrised Post-Newtonian parameter $gamma$ for all particles at all energies. The large Shapiro time delays of extragalactic sources allow us to put tight constraints on di fferences in $gamma$ between photons of different frequencies from spectral lag data, since a non-zero $Delta gamma$ would result in a frequency-dependent arrival time. The majority of previous constraints have assumed that the Shapiro time delay is dominated by a few local massive objects, although this is a poor approximation for distant sources. In this work we consider the cosmological context of these sources by developing a source-by-source, Monte Carlo-based forward model for the Shapiro time delays by combining constrained realisations of the local density field using the BORG algorithm with unconstrained large-scale modes. Propagating uncertainties in the density field reconstruction and marginalising over an empirical model describing other contributions to the time delay, we use spectral lag data of Gamma Ray Bursts from the BATSE satellite to constrain $Delta gamma < 3.4 times 10^{-15}$ at $1 sigma$ confidence between photon energies of $25 {rm , keV}$ and $325 {rm , keV}$.
113 - Qasem Exirifard 2011
The MOND paradigm to the missing mass problem requires introducing a functional that is to be identified through observations and experiments. We consider AQUAL theory as a realization of the MOND. We show that the accurate value of the Earth GM meas ured by the Lunar Laser Ranging and that by various artificial Earth satellites, including the accurate tracking of the LAGEOS satellites, constrain this functional such that some of the chosen/proposed functional are refuted.
According to the braneworld idea, ordinary matter is confined on a 3-dimensional space (brane) that is embedded in a higher-dimensional space-time where gravity propagates. In this work, after reviewing the limits coming from general relativity, fini teness of pressure and causality on the brane, we derive observational constraints on the braneworld parameters from the existence of stable compact stars. The analysis is carried out by solving numerically the brane-modified Tolman-Oppenheimer-Volkoff equations, using different representative equations of state to describe matter in the star interior. The cases of normal dense matter, pure quark matter and hybrid matter are considered.
108 - S. Mendoza , G.J. Olmo 2014
We give precise details to support that observations of gravitational lensing at scales of individual, groups and clusters of galaxies can be understood in terms of non-Newtonian gravitational interactions with a relativistic structure compatible wit h the Einstein Equivalence Principle. This result is derived on very general grounds without knowing the underlying structure of the gravitational field equations. As such, any developed gravitational theory built to deal with these astrophysical scales needs to reproduce the obtained results of this article.
Using astrometric observations spanning more than a century and including a large set of Cassini data, we determine Saturns tidal parameters through their current effects on the orbits of the eight main and four coorbital moons. We have used the latt er to make the first determination of Saturns Love number, $k_2=0.390 pm 0.024$, a value larger than the commonly used theoretical value of 0.341 (Gavrilov & Zharkov, 1977), but compatible with more recent models (Helled & Guillot, 2013) for which $k_2$ ranges from 0.355 to 0.382. Depending on the assumed spin for Saturns interior, the new constraint can lead to a reduction of up to 80% in the number of potential models, offering great opportunities to probe the planets interior. In addition, significant tidal dissipation within Saturn is confirmed (Lainey et al., 2012) corresponding to a high present-day tidal ratio $k_2/Q=(1.59 pm 0.74) times 10^{-4}$ and implying fast orbital expansions of the moons. This high dissipation, with no obvious variations for tidal frequencies corresponding to those of Enceladus and Dione, may be explained by viscous friction in a solid core, implying a core viscosity typically ranging between $10^{14}$ and $10^{16}$ Pa.s (Remus et al., 2012). However, a dissipation increase by one order of magnitude at Rheas frequency could suggest the existence of an additional, frequency-dependent, dissipation process, possibly from turbulent friction acting on tidal waves in the fluid envelope of Saturn (Ogilvie & Li, 2004). Alternatively, a few of Saturns moons might themselves experience large tidal dissipation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا