ترغب بنشر مسار تعليمي؟ اضغط هنا

We demonstrate the formation of semimetal graphite/semiconductor Schottky barriers where the semiconductor is either silicon (Si), gallium arsenide (GaAs) or 4H-silicon carbide (4H-SiC). Near room temperature, the forward-bias diode characteristics a re well described by thermionic emission, and the extracted barrier heights, which are confirmed by capacitance voltage measurements, roughly follow the Schottky-Mott relation. Since the outermost layer of the graphite electrode is a single graphene sheet, we expect that graphene/semiconductor barriers will manifest similar behavior.
We have used the two-step growth technique, quench condensing followed by an anneal, to grow ultra thin films of silver on glass substrates. As has been seen with semiconductor substrates this process produces a metastable homogeneous covering of sil ver. By measuring the in situ resistance of the film during growth we are able to see that the low temperature growth onto substrates held at 100 Kelvin produces a precursor phase that is insulating until the film has been annealed. The transformation of the precursor phase into the final, metallic silver film occurs at a characteristic temperature near 150K where the sample reconstructs. This reconstruction is accompanied by a decrease in resistance of up to 10 orders of magnitude.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا