ترغب بنشر مسار تعليمي؟ اضغط هنا

A novel spin-spin coupling mechanism that occurs during the transport of spin-polarized minority electrons in semiconductors is described. Unlike the Coulomb spin drag, this coupling arises from the ambipolar electric field which is created by the di fferential movement of the photoelectrons and the photoholes. Like the Coulomb spin drag, it is a pure spin coupling that does not affect charge diffusion. Experimentally, the coupling is studied in $p^+$ GaAs using polarized microluminescence. The coupling manifests itself as an excitation power dependent reduction in the spin polarization at the excitation spot textit{without} any change of the spatially averaged spin polarization.
The effect of an electric field on the spatial charge and spin profiles of photoelectrons in p+-GaAs is studied as a function of lattice and electron temperature. The charge and spin mobilities of photoelectrons are equal in all conditions and exhibi t the well known increase as the temperature is lowered. It is shown that this is related mainly to the electron statistics rather than the majority hole statistics. This finding suggests that current theoretical models based on degeneracy of majority carriers cannot fully explain the observed temperature dependence of minority carrier mobility.
Spin-polarized transport of photo-electrons in bulk, p-type GaAs is investigated in the Pauli blockade regime. In contrast to usual spin diffusion processes in which the spin polarization decreases with distance traveled due to spin relaxation, image s of the polarized photo-luminescence reveal a spin-filter effect in which the spin polarization increases during transport over the first 2 microns from 26 % to 38 %. This is shown to be a direct consequence of the Pauli Principle and the associated quantum degeneracy pressure which results in a spin-dependent increase in the minority carrier diffusion constants and mobilities. The central role played by the quantum degeneracy pressure is confirmed via the observation of a spin-dependent increase in the photo-electron volume and a spin-charge coupling description of this is presented.
93 - A. C. H. Rowe 2013
Piezoresistance is the change in the electrical resistance, or more specifically the resistivity, of a solid induced by an applied mechanical stress. The origin of this effect in bulk, crystalline materials like Silicon, is principally a change in th e electronic structure which leads to a modification of the charge carriers effective mass. The last few years have seen a rising interest in the piezoresistive properties of semiconductor nanostructures, motivated in large part by claims of a giant piezoresistance effect in Silicon nanowires that is more than two orders of magnitude bigger than the known bulk effect. This review aims to present the controversy surrounding claims and counter-claims of giant piezoresistance in Silicon nanostructures by presenting a summary of the major works carried out over the last 10 years. The main conclusions that can be drawn from the literature are that i) reproducible evidence for a giant piezoresistance effect in un-gated Silicon nanowires is limited, ii) in gated nanowires a giant effect has been reproduced by several authors, iii) the giant effect is fundamentally different from either the bulk Silicon piezoresistance or that due to quantum confinement in accumulation layers and heterostructures, the evidence pointing to an electrostatic origin for the piezoresistance, iv) released nanowires tend to have slightly larger piezoresistance coefficients than un-released nanowires, and v) insufficient work has been performed on bottom-up grown nanowires to be able to rule out a fundamental difference in their properties when compared with top-down nanowires. On the basis of this, future possible research directions are suggested.
In p+ GaAs thin films, the effect of photoelectron degeneracy on spin transport is investigated theoretically and experimentally by imaging the spin polarization profile as a function of distance from a tightly-focussed light excitation spot. Under d egeneracy of the electron gas (high concentration, low temperature), a dip at the center of the polarization profile appears with a polarization maximum at a distance of about $2 ; mu m$ from the center. This counterintuitive result reveals that photoelectron diffusion depends on spin, as a direct consequence of the Pauli principle. This causes a concentration dependence of the spin stiffness while the spin dependence of the mobility is found to be weak in doped material. The various effects which can modify spin transport in a degenerate electron gas under local laser excitation are considered. A comparison of the data with a numerical solution of the coupled diffusion equations reveals that ambipolar coupling with holes increases the steady-state photo-electron density at the excitation spot and therefore the amplitude of the degeneracy-induced polarization dip. Thermoelectric currrents are predicted to depend on spin under degeneracy (spin Soret currents), but these currents are negligible except at very high excitation power where they play a relatively small role. Coulomb spin drag and bandgap renormalization are negligible due to electrostatic screening by the hole gas.
We investigate weak localization in metallic networks etched in a two dimensional electron gas between $25:$mK and $750:$mK when electron-electron (e-e) interaction is the dominant phase breaking mechanism. We show that, at the highest temperatures, the contributions arising from trajectories that wind around the rings and trajectories that do not are governed by two different length scales. This is achieved by analyzing separately the envelope and the oscillating part of the magnetoconductance. For $Tgtrsim0.3:$K we find $Lphi^mathrm{env}propto{T}^{-1/3}$ for the envelope, and $Lphi^mathrm{osc}propto{T}^{-1/2}$ for the oscillations, in agreement with the prediction for a single ring cite{LudMir04,TexMon05}. This is the first experimental confirmation of the geometry dependence of decoherence due to e-e interaction.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا