ترغب بنشر مسار تعليمي؟ اضغط هنا

The superconducting state of the newly discovered superconductor K$_2$Cr$_3$As$_3$ with a quasi-one-dimensional crystal structure ($T_{bf c}sim$ 6 K) has been investigated by using magnetization and muon-spin relaxation or rotation ($mu$SR) measureme nts. Our analysis of the temperature dependence of the superfluid density obtained from the transverse field (TF) $mu$SR measurements fit very well to an isotropic $s$-wave character for the superconducting gap. Furthermore a similarly good fit can also be obtained using a $d$-wave model with line nodes. Our zero-field $mu$SR measurements do reveal very weak evidence of the spontaneous appearance of an internal magnetic field near the transition temperature, which might indicate that the superconducting state is not conventional. This observation suggests that the electrons are paired via unconventional channels such as spin fluctuations, as proposed on the basis of theoretical models of K$_2$Cr$_3$As$_3$. Furthermore, from our TF $mu$SR study the magnetic penetration depth $lambda_L$, superconducting carrier density $n_s$, and effective-mass enhancement $m^*$ have been estimated to be $lambda_L(0)$ = 454(4) nm, $n_s$ = 2.4$times$10$^{27}$ carriers/m$^3$, and $m^*$ = 1.75 $m_e$, respectively.
Neutron stars feature extremely high magnetic fields with deduced field strengths of $10^{15}$ G in the case of magnetars and potentially much higher values inside of the star. In this context we consider the appearance of $rho^-$ meson condensation taking into account the effect of the magnetic field. The results show that, depending on parameters, such a condensation in magnetized neutron stars might (just) occur.
Results of muon spin relaxation ($mu$SR) and neutron powder diffraction measurements on a reentrant superconductor Eu(Fe$_{0.86}$Ir$_{0.14}$)$_2$As$_2$ are presented. Eu(Fe$_{0.86}$Ir$_{0.14}$)$_2$As$_2$ exhibits superconductivity at $T_{rm c,on} app rox 22.5$~K competing with long range ordered Eu$^{+2}$ moments below $approx 18$ K. A reentrant behavior (manifested by nonzero resistivity in the temperature range 10--17.5 K) results from an exquisite competition between the superconductivity and magnetic order. The zero field $mu$SR data confirm the long range magnetic ordering below $T_{rm Eu} = 18.7(2)$ K. The transition temperature is found to increase with increasing magnetic field in longitudinal field $mu$SR which along with the neutron diffraction results, suggests the transition to be ferromagnetic. The neutron diffraction data reveal a clear presence of magnetic Bragg peaks below $T_{rm Eu}$ which could be indexed with propagation vector k = (0, 0, 0), confirming a long range magnetic ordering in agreement with $mu$SR data. Our analysis of the magnetic structure reveals an ordered magnetic moment of $6.29(5),mu_{rm B}$ (at 1.8 K) on the Eu atoms and they form a ferromagnetic structure with moments aligned along the $c$-axis. No change in the magnetic structure is observed in the reentrant or superconducting phases and the magnetic structure remains same for 1.8 K $leq T leq T_{rm Eu}$. No clear evidence of structural transition or Fe moment ordering was found.
Both Ba$_4$Mn$_3$O$_{10}$ and Sr$_4$Mn$_3$O$_{10}$ crystallize in an orthorhombic crystal structure consisting of corrugated layers containing Mn$_3$O$_{12}$ polydedra. The thermal variation of magnetic susceptibility of the compositions consists of a broad hump like feature indicating the presence of low dimensional magnetic correlation. We have systematically investigated the magnetic data of these compounds and found that the experimental results match quite well with the two dimensional Heisenberg model of spin-spin interaction. The two dimensional nature of the magnetic spin-spin interaction is supported by the low temperature heat capacity data of Ba$_4$Mn$_3$O$_{10}$. Interestingly, both the samples show dielectric anomaly near the magnetic ordering temperature indicating multiferroic behavior.
The results of heat capacity C_p(T, H) and electrical resistivity rho(T,H) measurements down to 0.35 K as well as muon spin relaxation and rotation (muSR) measurements on a noncentrosymmetric superconductor LaIrSi3 are presented. Powder neutron diffr action confirmed the reported noncentrosymmetric body-centered tetragonal BaNiSn3-type structure (space group I4,mm) of LaIrSi3. The bulk superconductivity is observed below T_c = 0.72(1) K. The intrinsic Delta C_e/gamma_n T_c = 1.09(3) is significantly smaller than the BCS value of 1.43, and this reduction is accounted by the alpha-model of BCS superconductivity. The analysis of the superconducting state C_e(T) data by the single-band alpha-model indicates a moderately anisotropic order parameter with the s-wave gap Delta(0)/k_B T_c = 1.54(2) which is lower than the BCS value of 1.764. Our estimates of various normal and superconducting state parameters indicate a weakly coupled electron-phonon driven type-I s-wave superconductivity in LaIrSi3. The muSR results also confirm the conventional type-I superconductivity in LaIrSi3 with a preserved time reversal symmetry and hence a singlet pairing superconducting ground state.
The effects of electron (Ir) and hole (Re) doping on the hybridization gap and antiferromagnetic order have been studied by magnetization, muon spin relaxation ($mu^+$SR), and inelastic neutron scattering on the polycrystalline samples of Ce(Os$_{1-x }$Ir$_x$)$_2$Al$_{10}$ ($x$ = 0.08 and 0.15) and CeOs$_{1.94}$Re$_{0.06}$Al$_{10}$. $mu^+$SR spectra clearly reveals magnetic ordering below 20 and 10 K for $x$ = 0.08 and 0.15 samples respectively with a very weak signature of oscillations of the muon initial asymmetry at very short time scale. Our important findings are that small amount of electron doping (i) completely suppress the inelastic magnetic excitations near 11 meV down to 2K, which were observed in the undoped compound, and the response transforms into a broad quasielastic response and (ii) the internal field at the corresponding muon site is remarkably enhanced by about ten times compared with the parent compound. On the other hand with small amount of hole (3% Re) doping the intensity of the inelastic magnetic excitations near 11 meV is reduced significantly. The main origin of the observed doping effect is an extra 5$d$ electrons being carried by Ir and a hole carried by Re compared with that the Os atom. The obtained results demonstrate a great sensitivity of the carrier doping and provides additional ways to study their anomalous magnetic properties.
The lightly hole-doped system CeOs1.94Re0.06Al10 has been studied by muon spin relaxation and neutron diffraction measurements. A long-range antiferromagnetic ordering of the Ce-sublattice with substantially reduced value of the magnetic moment 0.18( 1) mu_B has been found below T_N = 21 K. Similar to the undoped parent compound, the magnetic ground state of CeOs1.94Re0.06Al10 preserves the anomalous direction of the ordered moments along the c-axis. The obtained result reveals the crucial difference between electron- and hole-doping effects on the magnetic ordering in CeOs2Al10. The former suppresses the anisotropic c-f hybridization and promotes localized Ce moments. On the contrary, the latter increases the hybridization and shifts the system towards delocalized non-magnetic state.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا