ترغب بنشر مسار تعليمي؟ اضغط هنا

Searching for triplet superconductivity in the Quasi-One-Dimensional K2Cr3As3

73   0   0.0 ( 0 )
 نشر من قبل Devashibhai Adroja
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The superconducting state of the newly discovered superconductor K$_2$Cr$_3$As$_3$ with a quasi-one-dimensional crystal structure ($T_{bf c}sim$ 6 K) has been investigated by using magnetization and muon-spin relaxation or rotation ($mu$SR) measurements. Our analysis of the temperature dependence of the superfluid density obtained from the transverse field (TF) $mu$SR measurements fit very well to an isotropic $s$-wave character for the superconducting gap. Furthermore a similarly good fit can also be obtained using a $d$-wave model with line nodes. Our zero-field $mu$SR measurements do reveal very weak evidence of the spontaneous appearance of an internal magnetic field near the transition temperature, which might indicate that the superconducting state is not conventional. This observation suggests that the electrons are paired via unconventional channels such as spin fluctuations, as proposed on the basis of theoretical models of K$_2$Cr$_3$As$_3$. Furthermore, from our TF $mu$SR study the magnetic penetration depth $lambda_L$, superconducting carrier density $n_s$, and effective-mass enhancement $m^*$ have been estimated to be $lambda_L(0)$ = 454(4) nm, $n_s$ = 2.4$times$10$^{27}$ carriers/m$^3$, and $m^*$ = 1.75 $m_e$, respectively.

قيم البحث

اقرأ أيضاً

88 - J. Yang , J. Luo , C.J. Yi 2021
A spin-triplet superconductor can harbor Majorana bound states that can be used in topological quantum computing. Recently, K2Cr3As3 and its variants with critical temperature Tc as high as 8 K have emerged as a new class of superconductors with ferr omagnetic spin fluctuations. Here we report a discovery in K2Cr3As3 single crystal that, the spin susceptibility measured by 75As Knight shift below Tc is unchanged with the magnetic field H0 applied in the ab plane, but vanishes toward zero temperature when H0 is along the c axis, which unambiguously establishes this compound as a spin-triplet superconductor described by a vector order-parameter d parallel to the c axis. Combining with points-nodal gap we show that K2Cr3As3 is a new platform for the study of topological superconductivity and its possible technical application.
We present a systematic derivation of a minimal five-band tight-binding model for the description of the electronic structure of the recently discovered quasi one-dimensional superconductor K2Cr3As3. Taking as a reference the density-functional theor y (DFT) calculation, we use the outcome of a Lowdin procedure to refine a Wannier projection and fully exploit the predominant weight at the Fermi level of the states having the same symmetry of the crystal structure. Such states are described in terms of five atomic-like d orbitals: four planar orbitals, two dxy and two dx2-y2, and a single out-of-plane one, dz2 . We show that this minimal model reproduces with great accuracy the DFT band structure in a broad energy window around the Fermi energy. Moreover, we derive an explicit simplified analytical expression of such model, which includes three nearest-neighbor hopping terms along the z direction and one nearest-neighbor term within the xy plane. This model captures very efficiently the energy spectrum of the system and, consequently, can be used to study transport properties, superconductivity and dynamical effects in this novel class of superconductors.
We study the tight-binding dispersion of the recently discovered superconductor K2Cr3As3, obtained from Wannier projection of Density Functional Theory (DFT) results. In order to establish quantitatively the actual degree of quasi-one dimensionality of this compound, we analyze the electronic band structure for two reduced sets of hopping parameters: one restricted to the Cr-As tubes and another one retaining a minimal number of in-plane hoppings. The corresponding total and local density of states of the compound are also computed with the aim of assessing the tight-binding results with respect to the DFT ones. We find a quite good agreement with the DFT results for the more extended set of hopping parameters, especially for what concerns the orbitals that dominate at the Fermi level. Accordingly, we conclude that one cannot avoid taking into account in-plane hoppings up to the next-nearest-neighbors cells even only to describe correctly the Fermi surface cuts and the populations along the kz direction. Such a choice of a minimal number of hopping parameters directly reflects in the possibility of correctly describing correlations and magnetic interactions.
We report the charge doping of KCr$_3$As$_3$ via H intercalation. We show that the previously reported ethanol bath deintercalation of K$_2$Cr$_3$As$_3$ to KCr$_3$As$_3$ has a secondary effect whereby H from the bath enters the quasi-one-dimensional Cr$_6$As$_6$ chains. Furthermore, we find that - contrary to previous interpretations - the difference between non-superconducting as-grown KCr$_3$As$_3$ samples and superconducting hydrothermally annealed samples is not a change in crystallinity but due to charge doping, with the latter treatment increasing the H concentration in the CrAs tubes effectively electron-doping the 133 compound. These results suggest a new stoichiometry KH$_x$Cr$_3$As$_3$, that superconductivity arises from a suppressed magnetic order via a tunable parameter and pave the way for the first charge-doped phase diagram in these materials.
It is the saturation of the transition temperature Tc in the range of 24 K for known materials in the late sixties which triggered the search for additional materials offering new coupling mechanisms leading in turn to higher Tcs. As a result of this stimulation, superconductivity in organic matter was discovered in tetramethyl-tetraselenafulvalene-hexafluorophosphate, (TMTSF)2PF6, in 1979, in the laboratory founded at Orsay by Professor Friedel and his colleagues in 1962. Although this conductor is a prototype example for low-dimensional physics, we mostly focus in this article on the superconducting phase of the ambient-pressure superconductor (TMTSF)2ClO4, in which the superconducting phase has been studied most intensively among the TMTSF salts. We shall present a series of experimental results supporting nodal d-wave symmetry for the superconducting gap in these prototypical quasi-one-dimensional conductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا