ترغب بنشر مسار تعليمي؟ اضغط هنا

The OPERA experiment was designed to search for $ u_{mu} rightarrow u_{tau}$ oscillations in appearance mode, i.e. by detecting the $tau$-leptons produced in charged current $ u_{tau}$ interactions. The experiment took data from 2008 to 2012 in the CERN Neutrinos to Gran Sasso beam. The observation of $ u_{mu} rightarrow u_{tau}$ appearance, achieved with four candidate events in a sub-sample of the data, was previously reported. In this paper, a fifth $ u_{tau}$ candidate event, found in an enlarged data sample, is described. Together with a further reduction of the expected background, the candidate events detected so far allow assessing the discovery of $ u_{mu}rightarrow u_{tau}$ oscillations in appearance mode with a significance larger than 5 $sigma$.
The NESSiE Collaboration has been setup to undertake a conclusive experiment to clarify the {em muon--neutrino disappearance} measurements at short baselines in order to put severe constraints to models with more than the three--standard neutrinos. T o this aim the current FNAL--Booster neutrino beam for a Short--Baseline experiment was carefully evaluated by considering the use of magnetic spectrometers at two sites, near and far ones. The detector locations were studied, together with the achievable performances of two OPERA--like spectrometers. The study was constrained by the availability of existing hardware and a time--schedule compatible with the undergoing project of multi--site Liquid--Argon detectors at FNAL. The settled physics case and the kind of proposed experiment on the Booster neutrino beam would definitively clarify the existing tension between the $ u_{mu}$ disappearance and the $ u_e$ appearance/disappearance at the eV mass scale. In the context of neutrino oscillations the measurement of $ u_{mu}$ disappearance is a robust and fast approach to either reject or discover new neutrino states at the eV mass scale. We discuss an experimental program able to extend by more than one order of magnitude (for neutrino disappearance) and by almost one order of magnitude (for antineutrino disappearance) the present range of sensitivity for the mixing angle between standard and sterile neutrinos. These extensions are larger than those achieved in any other proposal presented so far.
The OPERA experiment, exposed to the CERN to Gran Sasso $ u_mu$ beam, collected data from 2008 to 2012. Four oscillated $ u_tau$ Charged Current interaction candidates have been detected in appearance mode, which are consistent with $ u_mu to u_tau$ oscillations at the atmospheric $Delta m^2$ within the standard three-neutrino framework. In this paper, the OPERA $ u_tau$ appearance results are used to derive limits on the mixing parameters of a massive sterile neutrino.
Neutrino physics is nowadays receiving more and more attention as a possible source of information for the long-standing problem of new physics beyond the Standard Model. The recent measurement of the mixing angle $theta_{13}$ in the standard mixing oscillation scenario encourages us to pursue the still missing results on leptonic CP violation and absolute neutrino masses. However, puzzling measurements exist that deserve an exhaustive evaluation. The NESSiE Collaboration has been setup to undertake conclusive experiments to clarify the muon-neutrino disappearance measurements at small $L/E$, which will be able to put severe constraints to models with more than the three-standard neutrinos, or even to robustly measure the presence of a new kind of neutrino oscillation for the first time. To this aim the use of the current FNAL-Booster neutrino beam for a Short-Baseline experiment has been carefully evaluated. Its recent proposal refers to the use of magnetic spectrometers at two different sites, Near and Far ones. Their positions have been extensively studied, together with the possible performances of two OPERA-like spectrometers. The proposal is constrained by availability of existing hardware and a time-schedule compatible with the undergoing project of a multi-site Liquid-Argon detectors at FNAL. The experiment to be possibly setup at Booster will allow to definitively clarify the current $ u_{mu}$ disappearance tension with $ u_{e}$ appearance and disappearance at the eV mass scale.
The OPERA experiment is searching for nu_mu -> nu_tau oscillations in appearance mode i.e. via the direct detection of tau leptons in nu_tau charged current interactions. The evidence of nu_mu -> nu_tau appearance has been previously reported with th ree nu_tau candidate events using a sub-sample of data from the 2008-2012 runs. We report here a fourth nu_tau candidate event, with the tau decaying into a hadron, found after adding the 2012 run events without any muon in the final state to the data sample. Given the number of analysed events and the low background, nu_mu -> nu_tau oscillations are established with a significance of 4.2sigma.
The OPERA experiment, designed to perform the first observation of $ u_mu rightarrow u_tau$ oscillations in appearance mode through the detection of the $tau$ leptons produced in $ u_tau$ charged current interactions, has collected data from 2008 to 2012. In the present paper, the procedure developed to detect $tau$ particle decays, occurring over distances of the order of 1 mm from the neutrino interaction point, is described in detail. The results of its application to the search for charmed hadrons are then presented as a validation of the methods for $ u_tau$ appearance detection.
Neutrino physics is nowadays receiving more and more attention as a possible source of information for the long-standing problem of new physics beyond the Standard Model. The recent measurement of the mixing angle $theta_{13}$ in the standard mixing oscillation scenario encourages us to pursue the still missing results on leptonic CP violation and absolute neutrino masses. However, puzzling measurements exist that deserve an exhaustive evaluation. The NESSiE Collaboration has been setup to undertake conclusive experiments to clarify the muon-neutrino disappearance measurements at small $L/E$, which will be able to put severe constraints to models with more than the three-standard neutrinos, or even to robustly measure the presence of a new kind of neutrino oscillation for the first time. To this aim the use of the current FNAL-Booster neutrino beam for a Short-Baseline experiment has been carefully evaluated. This proposal refers to the use of magnetic spectrometers at two different sites, Near and Far. Their positions have been extensively studied, together with the possible performances of two OPERA-like spectrometers. The proposal is constrained by availability of existing hardware and a time-schedule compatible with the CERN project for a new more performant neutrino beam, which will nicely extend the physics results achievable at the Booster. The possible FNAL experiment will allow to clarify the current $ u_{mu}$ disappearance tension with $ u_e$ appearance and disappearance at the eV mass scale. Instead, a new CERN neutrino beam would allow a further span in the parameter space together with a refined control of systematics and, more relevant, the measurement of the antineutrino sector, by upgrading the spectrometer with detectors currently under R&D study.
The OPERA detector, designed to search for $ u_{mu} to u_{tau}$ oscillations in the CNGS beam, is located in the underground Gran Sasso laboratory, a privileged location to study TeV-scale cosmic rays. For the analysis here presented, the detector w as used to measure the atmospheric muon charge ratio in the TeV region. OPERA collected charge-separated cosmic ray data between 2008 and 2012. More than 3 million atmospheric muon events were detected and reconstructed, among which about 110000 multiple muon bundles. The charge ratio $R_{mu} equiv N_{mu^+}/N_{mu^-}$ was measured separately for single and for multiple muon events. The analysis exploited the inversion of the magnet polarity which was performed on purpose during the 2012 Run. The combination of the two data sets with opposite magnet polarities allowed minimizing systematic uncertainties and reaching an accurate determination of the muon charge ratio. Data were fitted to obtain relevant parameters on the composition of primary cosmic rays and the associated kaon production in the forward fragmentation region. In the surface energy range 1-20 TeV investigated by OPERA, $R_{mu}$ is well described by a parametric model including only pion and kaon contributions to the muon flux, showing no significant contribution of the prompt component. The energy independence supports the validity of Feynman scaling in the fragmentation region up to $200$ TeV/nucleon primary energy.
The OPERA experiment is designed to search for $ u_{mu} rightarrow u_{tau}$ oscillations in appearance mode i.e. through the direct observation of the $tau$ lepton in $ u_{tau}$ charged current interactions. The experiment has taken data for five ye ars, since 2008, with the CERN Neutrino to Gran Sasso beam. Previously, two $ u_{tau}$ candidates with a $tau$ decaying into hadrons were observed in a sub-sample of data of the 2008-2011 runs. Here we report the observation of a third $ u_tau$ candidate in the $tau^-tomu^-$ decay channel coming from the analysis of a sub-sample of the 2012 run. Taking into account the estimated background, the absence of $ u_{mu} rightarrow u_{tau}$ oscillations is excluded at the 3.4 $sigma$ level.
Neutrino physics is nowadays receiving more and more attention as a possible source of information for the long-standing problem of new physics beyond the Standard Model. The recent measurement of the third mixing angle theta13 in the standard mixing oscillation scenario encourages us to pursue the still missing results on leptonic CP violation and absolute neutrino masses. However, several puzzling measurements exist, which deserve an exhaustive evaluation. The NESSiE Collaboration has been setup to undertake a definitive experiment to clarify the muon disappearance measurements at small L/E, which will be able to put severe constraints to any model with more than the three-standard neutrinos, or even to robustly measure the presence of a new kind of neutrino oscillation for the first time. Within the context of the current CERN project, aimed to revitalize the neutrino field in Europe, we will illustrate the achievements that can be obtained by a double muon-spectrometer system, with emphasis on the search for sterile neutrinos.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا