ترغب بنشر مسار تعليمي؟ اضغط هنا

The NESSiE Concept for Sterile Neutrinos

205   0   0.0 ( 0 )
 نشر من قبل Luca Stanco
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Neutrino physics is nowadays receiving more and more attention as a possible source of information for the long-standing problem of new physics beyond the Standard Model. The recent measurement of the third mixing angle theta13 in the standard mixing oscillation scenario encourages us to pursue the still missing results on leptonic CP violation and absolute neutrino masses. However, several puzzling measurements exist, which deserve an exhaustive evaluation. The NESSiE Collaboration has been setup to undertake a definitive experiment to clarify the muon disappearance measurements at small L/E, which will be able to put severe constraints to any model with more than the three-standard neutrinos, or even to robustly measure the presence of a new kind of neutrino oscillation for the first time. Within the context of the current CERN project, aimed to revitalize the neutrino field in Europe, we will illustrate the achievements that can be obtained by a double muon-spectrometer system, with emphasis on the search for sterile neutrinos.



قيم البحث

اقرأ أيضاً

Neutrino physics is nowadays receiving more and more attention as a possible source of information for the long-standing problem of new physics beyond the Standard Model. The recent measurement of the mixing angle $theta_{13}$ in the standard mixing oscillation scenario encourages us to pursue the still missing results on leptonic CP violation and absolute neutrino masses. However, puzzling measurements exist that deserve an exhaustive evaluation. The NESSiE Collaboration has been setup to undertake conclusive experiments to clarify the muon-neutrino disappearance measurements at small $L/E$, which will be able to put severe constraints to models with more than the three-standard neutrinos, or even to robustly measure the presence of a new kind of neutrino oscillation for the first time. To this aim the use of the current FNAL-Booster neutrino beam for a Short-Baseline experiment has been carefully evaluated. Its recent proposal refers to the use of magnetic spectrometers at two different sites, Near and Far ones. Their positions have been extensively studied, together with the possible performances of two OPERA-like spectrometers. The proposal is constrained by availability of existing hardware and a time-schedule compatible with the undergoing project of a multi-site Liquid-Argon detectors at FNAL. The experiment to be possibly setup at Booster will allow to definitively clarify the current $ u_{mu}$ disappearance tension with $ u_{e}$ appearance and disappearance at the eV mass scale.
DANSS is a highly segmented 1~m${}^3$ plastic scintillator detector. Its 2500 one meter long scintillator strips have a Gd-loaded reflective cover. The DANSS detector is placed under an industrial 3.1~$mathrm{GW_{th}}$ reactor of the Kalinin Nuclear Power Plant 350~km NW from Moscow. The distance to the core is varied on-line from 10.7~m to 12.7~m. The reactor building provides about 50~m water-equivalent shielding against the cosmic background. DANSS detects almost 5000 $widetilde u_e$ per day at the closest position with the cosmic background less than 3$%$. The inverse beta decay process is used to detect $widetilde u_e$. Sterile neutrinos are searched for assuming the $4 u$ model (3 active and 1 sterile $ u$). The exclusion area in the $Delta m_{14}^2,sin^22theta_{14}$ plane is obtained using a ratio of positron energy spectra collected at different distances. Therefore results do not depend on the shape and normalization of the reactor $widetilde u_e$ spectrum, as well as on the detector efficiency. Results are based on 966 thousand antineutrino events collected at 3 distances from the reactor core. The excluded area covers a wide range of the sterile neutrino parameters up to $sin^22theta_{14}<0.01$ in the most sensitive region.
146 - Stefan Schoppmann 2019
In the recent years, major milestones in neutrino physics were accomplished at nuclear reactors: the smallest neutrino mixing angle $theta_{13}$ was determined with high precision and the emitted antineutrino spectrum was measured at unprecedented re solution. However, two anomalies, the first one related to the absolute flux and the second one to the spectral shape, have yet to be solved. The flux anomaly is known as the Reactor Antineutrino Anomaly and could be caused by the existence of a light sterile neutrino eigenstate participating in the neutrino oscillation phenomenon. Introducing a sterile state implies the presence of a fourth mass eigenstate, while global fits favour oscillation parameters around $sin^{2}(2theta)=0.09$ and $Delta m^{2}=1.8textrm{eV}^{2}$. The STEREO experiment was built to finally solve this puzzle. It is one of the first running experiments built to search for eV sterile neutrinos and takes data since end of 2016 at ILL Grenoble, France. At a short baseline of 10 metres, it measures the antineutrino flux and spectrum emitted by a compact research reactor. The segmentation of the detector in six target cells allows for independent measurements of the neutrino spectrum at multiple baselines. An active-sterile flavour oscillation could be unambiguously detected, as it distorts the spectral shape of each cells measurement differently. This contribution gives an overview on the STEREO experiment, along with details on the detector design, detection principle and the current status of data analysis.
116 - Stefan Schoppmann 2019
The STEREO experiment is designed to test the hypothesis of light sterile neutrinos being the cause of the Reactor Antineutrino Anomaly. It measures the antineutrino energy spectrum from the compact core of the ILL research reactor in six identical d etector cells covering baselines between 9 and 11 m. Results from 119 days of reactor turned on and 211 days of reactor turned off are reported. Using a direct comparison between neutrino interaction rates of all cells, independent of any flux prediction, we find compatibility with the null oscillation hypothesis. The best fit point of the Reactor Antineutrino Anomaly is rejected at 99% C.L.
We present a search for signatures of neutrino mixing of electron anti-neutrinos with additional hypothetical sterile neutrino flavors using the Double Chooz experiment. The search is based on data from 5 years of operation of Double Chooz, including 2 years in the two-detector configuration. The analysis is based on a profile likelihood, i.e. comparing the data to the model prediction of disappearance in a data-to-data comparison of the two respective detectors. The analysis is optimized for a model of three active and one sterile neutrino. It is sensitive in the typical mass range $5 cdot 10^{-3} $ eV$^2 lesssim Delta m^2_{41} lesssim 3cdot 10^{-1} $ eV$^2$ for mixing angles down to $sin^2 2theta_{14} gtrsim 0.02$. No significant disappearance additionally to the conventional disappearance related to $theta_{13} $ is observed and correspondingly exclusion bounds on the sterile mixing parameter $theta_{14} $ as function of $ Delta m^2_{41} $ are obtained.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا