ترغب بنشر مسار تعليمي؟ اضغط هنا

Search for Sterile Neutrinos in the Muon Neutrino Disappearance Mode at FNAL

142   0   0.0 ( 0 )
 نشر من قبل Luca Stanco
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The NESSiE Collaboration has been setup to undertake a conclusive experiment to clarify the {em muon--neutrino disappearance} measurements at short baselines in order to put severe constraints to models with more than the three--standard neutrinos. To this aim the current FNAL--Booster neutrino beam for a Short--Baseline experiment was carefully evaluated by considering the use of magnetic spectrometers at two sites, near and far ones. The detector locations were studied, together with the achievable performances of two OPERA--like spectrometers. The study was constrained by the availability of existing hardware and a time--schedule compatible with the undergoing project of multi--site Liquid--Argon detectors at FNAL. The settled physics case and the kind of proposed experiment on the Booster neutrino beam would definitively clarify the existing tension between the $ u_{mu}$ disappearance and the $ u_e$ appearance/disappearance at the eV mass scale. In the context of neutrino oscillations the measurement of $ u_{mu}$ disappearance is a robust and fast approach to either reject or discover new neutrino states at the eV mass scale. We discuss an experimental program able to extend by more than one order of magnitude (for neutrino disappearance) and by almost one order of magnitude (for antineutrino disappearance) the present range of sensitivity for the mixing angle between standard and sterile neutrinos. These extensions are larger than those achieved in any other proposal presented so far.

قيم البحث

اقرأ أيضاً

Neutrino physics is nowadays receiving more and more attention as a possible source of information for the long-standing problem of new physics beyond the Standard Model. The recent measurement of the mixing angle $theta_{13}$ in the standard mixing oscillation scenario encourages us to pursue the still missing results on leptonic CP violation and absolute neutrino masses. However, puzzling measurements exist that deserve an exhaustive evaluation. The NESSiE Collaboration has been setup to undertake conclusive experiments to clarify the muon-neutrino disappearance measurements at small $L/E$, which will be able to put severe constraints to models with more than the three-standard neutrinos, or even to robustly measure the presence of a new kind of neutrino oscillation for the first time. To this aim the use of the current FNAL-Booster neutrino beam for a Short-Baseline experiment has been carefully evaluated. This proposal refers to the use of magnetic spectrometers at two different sites, Near and Far. Their positions have been extensively studied, together with the possible performances of two OPERA-like spectrometers. The proposal is constrained by availability of existing hardware and a time-schedule compatible with the CERN project for a new more performant neutrino beam, which will nicely extend the physics results achievable at the Booster. The possible FNAL experiment will allow to clarify the current $ u_{mu}$ disappearance tension with $ u_e$ appearance and disappearance at the eV mass scale. Instead, a new CERN neutrino beam would allow a further span in the parameter space together with a refined control of systematics and, more relevant, the measurement of the antineutrino sector, by upgrading the spectrometer with detectors currently under R&D study.
Neutrino physics is nowadays receiving more and more attention as a possible source of information for the long-standing problem of new physics beyond the Standard Model. The recent measurement of the mixing angle $theta_{13}$ in the standard mixing oscillation scenario encourages us to pursue the still missing results on leptonic CP violation and absolute neutrino masses. However, puzzling measurements exist that deserve an exhaustive evaluation. The NESSiE Collaboration has been setup to undertake conclusive experiments to clarify the muon-neutrino disappearance measurements at small $L/E$, which will be able to put severe constraints to models with more than the three-standard neutrinos, or even to robustly measure the presence of a new kind of neutrino oscillation for the first time. To this aim the use of the current FNAL-Booster neutrino beam for a Short-Baseline experiment has been carefully evaluated. Its recent proposal refers to the use of magnetic spectrometers at two different sites, Near and Far ones. Their positions have been extensively studied, together with the possible performances of two OPERA-like spectrometers. The proposal is constrained by availability of existing hardware and a time-schedule compatible with the undergoing project of a multi-site Liquid-Argon detectors at FNAL. The experiment to be possibly setup at Booster will allow to definitively clarify the current $ u_{mu}$ disappearance tension with $ u_{e}$ appearance and disappearance at the eV mass scale.
234 - D.Indurthy 2004
The Neutrinos at the Main Injector (NuMI) beamline will deliver an intense muon neutrino beam by focusing a beam of mesons into a long evacuated decay volume. The beam must be steered with 1 mRad angular accuracy toward the Soudan Underground Laborat ory in northern Minnesota. We have built 4 arrays of ionization chambers to monitor the neutrino beam direction and quality. The arrays are located at 4 stations downstream of the decay volume, and measure the remnant hadron beam and tertiary muons produced along with neutrinos in meson decays. We review how the monitors will be used to make beam quality measurements, and as well we review chamber construction details, radiation damage testing, calibration, and test beam results.
We report results of a search for oscillations involving a light sterile neutrino over distances of 1.04 and $735,mathrm{km}$ in a $ u_{mu}$-dominated beam with a peak energy of $3,mathrm{GeV}$. The data, from an exposure of $10.56times 10^{20},textr m{protons on target}$, are analyzed using a phenomenological model with one sterile neutrino. We constrain the mixing parameters $theta_{24}$ and $Delta m^{2}_{41}$ and set limits on parameters of the four-dimensional Pontecorvo-Maki-Nakagawa-Sakata matrix, $|U_{mu 4}|^{2}$ and $|U_{tau 4}|^{2}$, under the assumption that mixing between $ u_{e}$ and $ u_{s}$ is negligible ($|U_{e4}|^{2}=0$). No evidence for $ u_{mu} to u_{s}$ transitions is found and we set a world-leading limit on $theta_{24}$ for values of $Delta m^{2}_{41} lesssim 1,mathrm{eV}^{2}$.
150 - William C. Louis 2018
The MINOS/MINOS+ experiment has recently reported stringent limits on $ u_mu$ disappearance that appear to rule out the 3+1 sterile neutrino model. However, in this paper we wish to point out problems associated with the MINOS/MINOS+ analysis. In par ticular, we find that MINOS/MINOS+ has either underestimated their systematic errors and/or has obtained evidence for physics beyond the 3-neutrino paradigm. Either case would invalidate the limits on $ u_mu$ disappearance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا