ترغب بنشر مسار تعليمي؟ اضغط هنا

We observe the effect of non-zero magnetization m onto the superconducting ground state of the one dimensional repulsive Hubbard model with correlated hopping X. For t/2 < X < 2t/3, the system first manifests Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) o scillations in the pair-pair correlations. For m = m1 a kinetic energy driven macroscopic phase separation into low-density superconducting domains and high-density polarized walls takes place. For m > m2 the domains fully localize, and the system eventually becomes a ferrimagnetic insulator.
We determine the quantum phase diagram of the one-dimensional Hubbard model with bond-charge interaction X in addition to the usual Coulomb repulsion U at half-filling. For large enough X and positive U the model shows three phases. For large U the s ystem is in the spin-density wave phase already known in the usual Hubbard model. As U decreases, there is first a spin transition to a spontaneously dimerized bond-ordered wave phase and then a charge transition to a novel phase in which the dominant correlations at large distances correspond to an incommensurate singlet superconductor.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا