ﻻ يوجد ملخص باللغة العربية
We determine the quantum phase diagram of the one-dimensional Hubbard model with bond-charge interaction X in addition to the usual Coulomb repulsion U at half-filling. For large enough X and positive U the model shows three phases. For large U the system is in the spin-density wave phase already known in the usual Hubbard model. As U decreases, there is first a spin transition to a spontaneously dimerized bond-ordered wave phase and then a charge transition to a novel phase in which the dominant correlations at large distances correspond to an incommensurate singlet superconductor.
The repulsive one-dimensional Hubbard model with bond-charge interaction (HBC) in the superconducting regime is mapped onto the spin-1/2 XY model with transverse field. We calculate correlations and phase boundaries, realizing an excellent agreement
We rigorously prove that an extended Hubbard model with attraction in two dimensions has an unconventional pairing ground state for any electron filling. The anisotropic spin-0 or anisotropic spin-1 pairing symmetry is realized, depending on a phase
We consider the repulsive Hubbard model in one dimension and show the different mechanisms present in the charge and spin separation phenomena for an electron, at half filling and bellow half filling. We also comment recent experimental results.
We investigate a two-orbital model for iron-based superconductors to elucidate the effect of interplay between electron correlation and Jahn-Teller electron-phonon coupling by using the dynamical mean-field theory combined with the exact diagonalizat
A unique property of a dynamically generated quantum spin Hall state are Goldstone modes that correspond to the long-wavelength fluctuations of the spin-orbit coupling order parameter whose topological Skyrmion excitations carry charge 2$e$. Within t