ترغب بنشر مسار تعليمي؟ اضغط هنا

We find a further class of exact solutions to the Lighthill Whitham Richards Payne (LWRP) traffic flow equations. As before, using two consecutive Lagrangian transformations, a linearization is achieved. Next, depending on the initial density, we eit her obtain exact formulae for the dependence of the car density and velocity on x, t, or else, failing that, the same result in a parametric representation. The calculation always involves two possible factorizations of a consistency condition. Both must be considered. In physical terms, the lineup usually separates into two offshoots at different velocities. Each velocity soon becomes uniform. This outcome in many ways resembles not only Rowlands, Infeld and Skorupski J. Phys. A: Math. Theor. 46 (2013) 365202 (part I) but also the two soliton solution to the Korteweg-de Vries equation. This paper can be read independently of part I. This explains unavoidable repetitions. Possible uses of both papers in checking numerical codes are indicated at the end. Since LWRP, numerous more elaborate models, including multiple lanes, traffic jams, tollgates etc. abound in the literature. However, we present an exact solution. These are few and far between, other then found by inverse scattering. The literature for various models, including ours, is given. The methods used here and in part I may be useful in solving other problems, such as shallow water flow.
We find a class of exact solutions to the Lighthill Whitham Richards Payne (LWRP) traffic flow equations. Using two consecutive lagrangian transformations, a linearization is achieved. Next, depending on the initial density, we either apply (again tw o) Lambert functions and obtain exact formulas for the dependence of the car density and velocity on x and t, or else, failing that, the same result in a parametric representation. The calculation always involves two possible factorizations of a consistency condition. Both must be considered. In physical terms, the lineup usually separates into two offshoots at different velocities. Each velocity soon becomes uniform. This outcome in many ways resembles the two soliton solution to the Korteweg-de Vries equation. We check general conservation requirements. Although traffic flow research has developed tremendously since LWRP, this calculation, being exact, may open the door to solving similar problems, such as gas dynamics or water flow in rivers. With this possibility in mind, we outline the procedure in some detail at the end.
In two preceding papers (Infeld and Senatorski 2003 J. Phys.: Condens. Matter 15 5865, and Senatorski and Infeld 2004 J. Phys.: Condens. Matter 16 6589) the authors confirmed Feynmans hypothesis on how circular vortices can be created from oppositely polarized pairs of linear vortices (first paper), and then gave examples of the creation of several different circular vortices from one linear pair (second paper). Here in part III, we give two classes of examples of how the vortices can interact. The first confirms the intuition that the reconnection processes which join two interacting vortex lines into one, practically do not occur. The second shows that new circular vortices can also be created from pairs of oppositely polarized coaxial circular vortices. This seems to contradict the results for such pairs given in Koplik and Levine 1996 Phys. Rev. Lett. 76 4745.
117 - A. A. Skorupski , E. Infeld 2009
New non-linear, spatially periodic, long wavelength electrostatic modes of an electron fluid oscillating against a motionless ion fluid (Langmuir waves) are given, with viscous and resistive effects included. The cold plasma approximation is adopted, which requires the wavelength to be sufficiently large. The pertinent requirement valid for large amplitude waves is determined. The general non-linear solution of the continuity and momentum transfer equations for the electron fluid along with Poissons equation is obtained in simple parametric form. It is shown that in all typical hydrogen plasmas, the influence of plasma resistivity on the modes in question is negligible. Within the limitations of the solution found, the non-linear time evolution of any (periodic) initial electron number density profile n_e(x, t=0) can be determined (examples). For the modes in question, an idealized model of a strictly cold and collisionless plasma is shown to be applicable to any real plasma, provided that the wavelength lambda >> lambda_{min}(n_0,T_e), where n_0 = const and T_e are the equilibrium values of the electron number density and electron temperature. Within this idealized model, the minimum of the initial electron density n_e(x_{min}, t=0) must be larger than half its equilibrium value, n_0/2. Otherwise, the corresponding maximum n_e(x_{max},t=tau_p/2), obtained after half a period of the plasma oscillation blows up. Relaxation of this restriction on n_e(x, t=0) as one decreases lambda, due to the increase of the electron viscosity effects, is examined in detail. Strong plasma viscosity is shown to change considerably the density profile during the time evolution, e.g., by splitting the largest maximum in two.
A method for solving model nonlinear equations describing plasma oscillations in the presence of viscosity and resistivity is given. By first going to the Lagrangian variables and then transforming the space variable conveniently, the solution in par ametric form is obtained. It involves simple elementary functions. Our solution includes all known exact solutions for an ideal cold plasma and a large class of new ones for a more realistic plasma. A new nonlinear effect is found of splitting of the largest density maximum, with a saddle point between the peaks so obtained. The method may sometimes be useful where Inverse Scattering fails.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا