ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonlinear Electron Oscillations in a Viscous and Resistive Plasma

151   0   0.0 ( 0 )
 نشر من قبل Andrzej Skorupski
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

New non-linear, spatially periodic, long wavelength electrostatic modes of an electron fluid oscillating against a motionless ion fluid (Langmuir waves) are given, with viscous and resistive effects included. The cold plasma approximation is adopted, which requires the wavelength to be sufficiently large. The pertinent requirement valid for large amplitude waves is determined. The general non-linear solution of the continuity and momentum transfer equations for the electron fluid along with Poissons equation is obtained in simple parametric form. It is shown that in all typical hydrogen plasmas, the influence of plasma resistivity on the modes in question is negligible. Within the limitations of the solution found, the non-linear time evolution of any (periodic) initial electron number density profile n_e(x, t=0) can be determined (examples). For the modes in question, an idealized model of a strictly cold and collisionless plasma is shown to be applicable to any real plasma, provided that the wavelength lambda >> lambda_{min}(n_0,T_e), where n_0 = const and T_e are the equilibrium values of the electron number density and electron temperature. Within this idealized model, the minimum of the initial electron density n_e(x_{min}, t=0) must be larger than half its equilibrium value, n_0/2. Otherwise, the corresponding maximum n_e(x_{max},t=tau_p/2), obtained after half a period of the plasma oscillation blows up. Relaxation of this restriction on n_e(x, t=0) as one decreases lambda, due to the increase of the electron viscosity effects, is examined in detail. Strong plasma viscosity is shown to change considerably the density profile during the time evolution, e.g., by splitting the largest maximum in two.



قيم البحث

اقرأ أيضاً

A method for solving model nonlinear equations describing plasma oscillations in the presence of viscosity and resistivity is given. By first going to the Lagrangian variables and then transforming the space variable conveniently, the solution in par ametric form is obtained. It involves simple elementary functions. Our solution includes all known exact solutions for an ideal cold plasma and a large class of new ones for a more realistic plasma. A new nonlinear effect is found of splitting of the largest density maximum, with a saddle point between the peaks so obtained. The method may sometimes be useful where Inverse Scattering fails.
In this study, the evolution of a highly unstable m = 1 resistive tearing mode, leading to plasmoid formation in a Harris sheet is studied in the framework of full MHD model using the NIMROD simulation. Following the initial nonlinear growth of the p rimary m = 1 island, the X-point develops into a secondary elongated current sheet that eventually breaks into plasmoids. Two distinctive viscous regimes are found for the plasmoid formation and saturation. In the low viscosity regime (i.e. P r . 1), the plasmoid width increases sharply with viscosity, whereas in the viscosity dominant regime (i.e. P r & 1 ), the plasmoid size gradually decreases with viscosity. Such a finding quantifies the role of viscosity in modulating the plasmoid formation process through its effects on the plasma flow and the reconnection itself.
Along with crossed electric and magnetic fields in a Hall thruster, a radial component of electric field is generated that takes ions toward the walls, which causes sputtering and produces dust contamination in the thruster plasma. Considering negati vely charged dust particles in the Hall thruster, we approach analytically the resistive instability by taking into account the oscillations of dust particles, ions and electrons along with finite temperatures of ions and electrons. In typical Hall thruster regimes, the resistive instability growth rate increases with higher collision rates in the plasma, stronger magnetic field but it decreases with higher mass of the dust and higher temperature of the ions and electrons. In comparison with dust-free models, the presence of dust results into a drop of the resistive instability growth rate by three orders of magnitude, but the growth rate increases slowly for dust densities within the typical range.
We propose a new method for analytical self-consistent description of the excitation of a strongly nonlinear wakefield (a bubble) excited by an electron bunch. This method makes it possible to calculate the shape of the bubble and the distribution of the electric field in it based only on the properties of the driver, without relying on any additional parameters. The analytical results are verified by particle-in-cell simulations and show good correspondence. A complete analytical solution for cylindrical drivers and scaling laws for the properties of the bubble and other plasma accelerator parameters depending on the bunch charge and length are derived.
88 - G. Rowlands , M. A. Allen 2006
The equations describing planar magnetoacoustic waves of permanent form in a cold plasma are rewritten so as to highlight the presence of a naturally small parameter equal to the ratio of the electron and ion masses. If the magnetic field is not near ly perpendicular to the direction of wave propagation, this allows us to use a multiple-scale expansion to demonstrate the existence and nature of nonlinear wave solutions. Such solutions are found to have a rapid oscillation of constant amplitude superimposed on the underlying large-scale variation. The approximate equations for the large-scale variation are obtained by making an adiabatic approximation and in one limit, new explicit solitary pulse solutions are found. In the case of a perpendicular magnetic field, conditions for the existence of solitary pulses are derived. Our results are consistent with earlier studies which were restricted to waves having a velocity close to that of long-wavelength linear magnetoacoustic waves.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا