ترغب بنشر مسار تعليمي؟ اضغط هنا

An individual excited two level system decays to its ground state by emitting a single photon in a process known as spontaneous emission. In accordance with quantum theory the probability of detecting the emitted photon decreases exponentially with t he time passed since the excitation of the two level system. In 1954 Dicke first considered the more subtle situation in which two emitters decay in close proximity to each other. He argued that the emission dynamics of a single two level system is altered by the presence of a second one, even if it is in its ground state. Here, we present a close to ideal realization of Dickes original two-spin Gedankenexperiment, using a system of two individually controllable superconducting qubits weakly coupled to a microwave cavity with a fast decay rate. The two-emitter case of superradiance is explicitly demonstrated both in time-resolved measurements of the emitted power and by fully reconstructing the density matrix of the emitted field in the photon number basis.
We make use of a superconducting qubit to study the effects of noise on adiabatic geometric phases. The state of the system, an effective spin one-half particle, is adiabatically guided along a closed path in parameter space and thereby acquires a ge ometric phase. By introducing artificial fluctuations in the control parameters, we measure the geometric contribution to dephasing for a variety of noise powers and evolution times. Our results clearly show that only fluctuations which distort the path lead to geometric dephasing. In a direct comparison with the dynamic phase, which is path-independent, we observe that the adiabatic geometric phase is less affected by noise-induced dephasing. This observation directly points towards the potential of geometric phases for quantum gates or metrological applications.
Steering a quantum harmonic oscillator state along cyclic trajectories leads to a path-dependent geometric phase. Here we describe an experiment observing this geometric phase in an electronic harmonic oscillator. We use a superconducting qubit as a non-linear probe of the phase, otherwise unobservable due to the linearity of the oscillator. Our results demonstrate that the geometric phase is, for a variety of cyclic trajectories, proportional to the area enclosed in the quadrature plane. At the transition to the non-adiabatic regime, we study corrections to the phase and dephasing of the qubit caused by qubit-resonator entanglement. The demonstrated controllability makes our system a versatile tool to study adiabatic and non-adiabatic geometric phases in open quantum systems and to investigate the potential of geometric gates for quantum information processing.
We report amplification of electromagnetic waves by a single artificial atom in open 1D space. Our three-level artificial atom -- a superconducting quantum circuit -- coupled to a transmission line presents an analog of a natural atom in open space. The system is the most fundamental quantum amplifier whose gain is limited by a spontaneous emission mechanism. The noise performance is determined by the quantum noise revealed in the spectrum of spontaneous emission, also characterized in our experiments.
We present experimental observation of electromagnetically induced transparency (EIT) on a single macroscopic artificial atom (superconducting quantum system) coupled to open 1D space of a transmission line. Unlike in a optical media with many atoms, the single atom EIT in 1D space is revealed in suppression of reflection of electromagnetic waves, rather than absorption. The observed almost 100 % modulation of the reflection and transmission of propagating microwaves demonstrates full controllability of individual artificial atoms and a possibility to manipulate the atomic states. The system can be used as a switchable mirror of microwaves and opens a good perspective for its applications in photonic quantum information processing and other fields.
An atom in open space can be detected by means of resonant absorption and reemission of electromagnetic waves, known as resonance fluorescence, which is a fundamental phenomenon of quantum optics. We report on the observation of scattering of propaga ting waves by a single artificial atom. The behavior of the artificial atom, a superconducting macroscopic two-level system, is in a quantitative agreement with the predictions of quantum optics for a pointlike scatterer interacting with the electromagnetic field in one-dimensional open space. The strong atom-field interaction as revealed in a high degree of extinction of propagating waves will allow applications of controllable artificial atoms in quantum optics and photonics.
We theoretically study a circuit QED architecture based on a superconducting flux qubit directly coupled to the center conductor of a coplanar waveguide transmission-line resonator. As already shown experimentally [Abdumalikov et al. Phys. Rev. B 78, 180502 (2008)], the strong coupling regime of cavity QED can readily be achieved by optimizing the local inductance of the resonator in the vicinity of the qubit. In addition to yielding stronger coupling with respect to other proposals for flux qubit based circuit QED, this approach leads to a qubit-resonator coupling strength g which does not scale as the area of the qubit but is proportional to the total inductance shared between the resonator and the qubit. Strong coupling can thus be attained while still minimizing sensitivity to flux noise. Finally, we show that by taking advantage of the the large kinetic inductance of a Josephson junction in the center conductor of the resonator can lead to coupling energies of several tens of percent of the resonator frequency, reaching the ultrastrong coupling regime of cavity QED where the rotating-wave approximation breaks down. This should allow an on-chip implementation of the E x B Jahn-Teller model.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا