ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of Dicke Superradiance for Two Artificial Atoms in a Cavity with High Decay Rate

102   0   0.0 ( 0 )
 نشر من قبل Jonas Mlynek A
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An individual excited two level system decays to its ground state by emitting a single photon in a process known as spontaneous emission. In accordance with quantum theory the probability of detecting the emitted photon decreases exponentially with the time passed since the excitation of the two level system. In 1954 Dicke first considered the more subtle situation in which two emitters decay in close proximity to each other. He argued that the emission dynamics of a single two level system is altered by the presence of a second one, even if it is in its ground state. Here, we present a close to ideal realization of Dickes original two-spin Gedankenexperiment, using a system of two individually controllable superconducting qubits weakly coupled to a microwave cavity with a fast decay rate. The two-emitter case of superradiance is explicitly demonstrated both in time-resolved measurements of the emitted power and by fully reconstructing the density matrix of the emitted field in the photon number basis.

قيم البحث

اقرأ أيضاً

We present a proposal for a probing scheme utilizing Dicke superradiance to obtain information about ultracold atoms in optical lattices. A probe photon is absorbed collectively by an ensemble of lattice atoms generating a Dicke state. The lattice dy namics (e.g., tunneling) affects the coherence properties of that Dicke state and thus alters the superradiant emission characteristics -- which in turn provides insight into the lattice (dynamics). Comparing the Bose-Hubbard and the Fermi-Hubbard model, we find similar superradiance in the strongly interacting Mott insulator regime, but crucial differences in the weakly interacting (superfluid or metallic) phase. Furthermore, we study the possibility to detect whether a quantum phase transition between the two regimes can be considered adiabatic or a quantum quench.
In 1954, Dicke predicted that a system of quantum emitters confined to a subwavelength volume would produce a superradiant burst. For such a burst to occur, the emitters must be in the special Dicke state with zero dipole moment. We show that a super radiant burst may also arise for non-Dicke initial states with nonzero dipole moment. Both for Dicke and non-Dicke initial states, superradiance arises due to a decrease in the dispersion of the quantum phase of the emitter state. For non-Dicke states, the quantum phase is related to the phase of long-period envelopes which modulate the oscillations of the dipole moments. A decrease in dispersion of the quantum phase causes a decrease in the dispersion of envelope phases that results in constructive interference of the envelopes and the superradiant burst.
We consider a one-dimensional chain of N equidistantly spaced noninteracting qubits embedded in an open waveguide. In the frame of single-excitation subspace, we systematically study the evolution of qubits amplitudes if the only qubit in the chain w as initially excited. We show that the temporal dynamics of qubits amplitudes crucially depend on the value of kd, where k is the wave vector, d is a distance between neighbor qubits. If kd is equal to an integer multiple of $pi$, then the qubits are excited to a stationary level which scales as SN^{-1}S. We show that in this case, it is the dark states which prevent qubits from decaying to zero even though they do not contribute to the output spectrum of photon emission. For other values of kd the excitations of qubits have the form of damping oscillations, which represent the vacuum Rabi oscillations in a multi-qubit system. In this case, the output spectrum of photon radiation is defined by a subradiant state with the smallest width.
We study the evolution of qubits amplitudes in a one-dimensional chain consisting of three equidistantly spaced noninteracting qubits embedded in an open waveguide. The study is performed in the frame of single-excitation subspace, where the only qub it in the chain is initially excited. We show that the dynamics of qubits amplitudes crucially depend on the value of $kd$, where $k$ is the wave vector, $d$ is a distance between neighbor qubits. If $kd$ is equal to an integer multiple of $pi$, then the qubits are excited to a stationary level. In this case, it is the dark states which prevent qubits from decaying to zero even though they do not contribute to the output spectrum of photon emission. For other values of $kd$ the excitations of qubits exhibit the damping oscillations which represent the vacuum Rabi oscillations in a three-qubit system. In this case, the output spectrum of photon radiation is determined by a subradiant state which has the lowest decay rate. We also investigated the case with the frequency of a central qubit being different from that of the edge qubits. In this case, the qibits decay rates can be controlled by the frequency detuning between the central and the edge qubits.
We study Dicke superradiance as collective and coherent absorption and (time-delayed) emission of photons from an ensemble of ultracold atoms in an optical lattice. Since this process depends on the coherence properties of the atoms (e.g., superfluid ity), it can be used as a probe for their quantum state. In analogy to pump-probe spectroscopy in solid-state physics, this detection method facilitates the investigation of nonequilibrium phenomena and is less invasive than time-of-flight experiments or direct (projective) measurements of the atom number (or parity) per lattice site, which both destroy properties of the quantum state such as phase coherence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا