ترغب بنشر مسار تعليمي؟ اضغط هنا

Cardiovascular diseases and their associated disorder of heart failure are one of the major death causes globally, being a priority for doctors to detect and predict its onset and medical consequences. Artificial Intelligence (AI) allows doctors to d iscover clinical indicators and enhance their diagnosis and treatments. Specifically, explainable AI offers tools to improve the clinical prediction models that experience poor interpretability of their results. This work presents an explainability analysis and evaluation of a prediction model for heart failure survival by using a dataset that comprises 299 patients who suffered heart failure. The model employs a data workflow pipeline able to select the best ensemble tree algorithm as well as the best feature selection technique. Moreover, different post-hoc techniques have been used for the explainability analysis of the model. The papers main contribution is an explainability-driven approach to select the best prediction model for HF survival based on an accuracy-explainability balance. Therefore, the most balanced explainable prediction model implements an Extra Trees classifier over 5 selected features (follow-up time, serum creatinine, ejection fraction, age and diabetes) out of 12, achieving a balanced-accuracy of 85.1% and 79.5% with cross-validation and new unseen data respectively. The follow-up time is the most influencing feature followed by serum-creatinine and ejection-fraction. The explainable prediction model for HF survival presented in this paper would improve a further adoption of clinical prediction models by providing doctors with intuitions to better understand the reasoning of, usually, black-box AI clinical solutions, and make more reasonable and data-driven decisions.
We present an application of anomaly detection techniques based on deep recurrent autoencoders to the problem of detecting gravitational wave signals in laser interferometers. Trained on noise data, this class of algorithms could detect signals using an unsupervised strategy, i.e., without targeting a specific kind of source. We develop a custom architecture to analyze the data from two interferometers. We compare the obtained performance to that obtained with other autoencoder architectures and with a convolutional classifier. The unsupervised nature of the proposed strategy comes with a cost in terms of accuracy, when compared to more traditional supervised techniques. On the other hand, there is a qualitative gain in generalizing the experimental sensitivity beyond the ensemble of pre-computed signal templates. The recurrent autoencoder outperforms other autoencoders based on different architectures. The class of recurrent autoencoders presented in this paper could complement the search strategy employed for gravitational wave detection and extend the reach of the ongoing detection campaigns.
We study the emergence of universal scaling in the time-evolving momentum distribution of a harmonically trapped three-dimensional Bose-Einstein condensate, parametrically driven to a turbulent state. We demonstrate that the out-of-equilibrium dynami cs post excitation is described by a single function due to nearby non-thermal fixed points. The observed behavior connects the dynamics of a quantum turbulent state to several far-from-equilibrium phenomena. We present a controllable protocol to explore universality in such systems, obtaining scaling exponents that can serve as reference for future theoretical investigations. Our experimental results thus offer a promising route to investigate the complex dynamics of the quantum turbulent regime under a novel perspective.
Currently, Chronic Kidney Disease (CKD) is experiencing a globally increasing incidence and high cost to health systems. A delayed recognition implies premature mortality due to progressive loss of kidney function. The employment of data mining to di scover subtle patterns in CKD indicators would contribute achieving early diagnosis. This work presents the development and evaluation of an explainable prediction model that would support clinicians in the early diagnosis of CKD patients. The model development is based on a data management pipeline that detects the best combination of ensemble trees algorithms and features selected concerning classification performance. The results obtained through the pipeline equals the performance of the best CKD prediction models identified in the literature. Furthermore, the main contribution of the paper involves an explainability-driven approach that allows selecting the best prediction model maintaining a balance between accuracy and explainability. Therefore, the most balanced explainable prediction model of CKD implements an XGBoost classifier over a group of 4 features (packed cell value, specific gravity, albumin, and hypertension), achieving an accuracy of 98.9% and 97.5% with cross-validation technique and with new unseen data respectively. In addition, by analysing the models explainability by means of different post-hoc techniques, the packed cell value and the specific gravity are determined as the most relevant features that influence the prediction results of the model. This small number of feature selected results in a reduced cost of the early diagnosis of CKD implying a promising solution for developing countries.
71 - Jaime A. Moreno 2020
Differentiation is an important task in control, observation and fault detection. Levants differentiator is unique, since it is able to estimate exactly and robustly the derivatives of a signal with a bounded high-order derivative. However, the conve rgence time, although finite, grows unboundedly with the norm of the initial differentiation error, making it uncertain when the estimated derivative is exact. In this paper we propose an extension of Levants differentiator so that the worst case convergence time can be arbitrarily assigned independently of the initial condition, i.e. the estimation converges in emph{Fixed-Time}. We propose also a family of continuous differentiators and provide a unified Lyapunov framework for analysis and design.
Network reconstruction is the first step towards understanding, diagnosing and controlling the dynamics of complex networked systems. It allows us to infer properties of the interaction matrix, which characterizes how nodes in a system directly inter act with each other. Despite a decade of extensive studies, network reconstruction remains an outstanding challenge. The fundamental limitations governing which properties of the interaction matrix (e.g., adjacency pattern, sign pattern and degree sequence) can be inferred from given temporal data of individual nodes remain unknown. Here we rigorously derive necessary conditions to reconstruct any property of the interaction matrix. These conditions characterize how uncertain can we be about the coupling functions that characterize the interactions between nodes, and how informative does the measured temporal data need to be; rendering two classes of fundamental limitations of network reconstruction. Counterintuitively, we find that reconstructing any property of the interaction matrix is generically as difficult as reconstructing the interaction matrix itself, requiring equally informative temporal data. Revealing these fundamental limitations shed light on the design of better network reconstruction algorithms, which offer practical improvements over existing methods.
It is shown that the Confluent Heun Equation (CHEq) reduces for certain conditions of the parameters to a particular class of Quasi-Exactly Solvable models, associated with the Lie algebra $sl (2,{mathbb R})$. As a consequence it is possible to find a set of polynomial solutions of this quasi-exactly solvable version of the CHEq. These finite solutions encompass previously known polynomial solutions of the Generalized Spheroidal Equation, Razavy Eq., Whittaker-Hill Eq., etc. The analysis is applied to obtain and describe special eigen-functions of the quantum Hamiltonian of two fixed Coulombian centers in two and three dimensions.
We present a theoretical study of the dynamics of H atoms adsorbed on graphene bilayers with Bernal stacking. First, through extensive density functional theory calculations, including van der Waals interactions, we obtain the activation barriers inv olved in the desorption and migration processes of a single H atom. These barriers, along with attempt rates and the energetics of H pairs, are used as input parameters in kinetic Monte Carlo simulations to study the time evolution of an initial random distribution of adsorbed H atoms. The simulations reveal that, at room temperature, H atoms occupy only one sublattice before they completely desorb or form clusters. This sublattice selectivity in the distribution of H atoms may last for sufficiently long periods of time upon lowering the temperature down to 0 C. The final fate of the H atoms, namely, desorption or cluster formation, depends on the actual relative values of the activation barriers which can be tuned by doping. In some cases a sublattice selectivity can be obtained for periods of time experimentally relevant even at room temperature. This result shows the possibility for observation and applications of the ferromagnetic state associated with such distribution.
In this paper we construct $mathcal{N}=2$ supersymmetric (SUSY) quantum mechanics over several configurations of Dirac-$delta$ potentials from one single delta to a Dirac comb rqrq. We show in detail how the building of supersymmetry on potentials w ith delta interactions placed in two or more points on the real line requires the inclusion of quasi-square wells. Therefore, the basic ingredient of a supersymmetric Hamiltonian containing two or more Dirac-$delta$s is the singular potential formed by a Dirac-$delta$ plus a step ($theta$) at the same point. In this $delta/theta$ SUSY Hamiltonian there is only one singlet ground state of zero energy annihilated by the two supercharges or a doublet of ground states paired by supersymmetry of positive energy depending on the relation between the Dirac well strength and the height of the step potential. We find a scenario of either unbroken supersymmetry with Witten index one or supersymmetry breaking when there is one bosonicrqrq and one fermionicrqrq ground state such that the Witten index is zero. We explain next the different structure of the scattering waves produced by three $delta/theta$ potentials with respect to the eigenfunctions arising in the non-SUSY case. In particular, many more bound states paired by supersymmetry exist within the supersymmetric framework compared with the non-SUSY problem. An infinite array of equally spaced $delta$-interactions of the same strength but alternatively attractive and repulsive are susceptible of being promoted to a ${cal N}=2$ supersymmetric system...
It is well established that at low energies one-dimensional (1D) fermionic systems are described by the Luttinger liquid (LL) theory, that predicts phenomena like spin-charge separation, and charge fractionalization into chiral modes. Here we show th rough the time evolution of an electron injected into a 1D t-J model, obtained with time-dependent density matrix renormalization group, that a further fractionalization of both charge and spin takes place beyond the hydrodynamic limit. Its dynamics can be understood at the supersymmetric point (J=2t) in terms of the excitations of the Bethe-Ansatz solution. Furthermore we show that fractionalization with similar characteristics extends to the whole region corresponding to a repulsive LL.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا