ترغب بنشر مسار تعليمي؟ اضغط هنا

Fundamental limitations of network reconstruction

90   0   0.0 ( 0 )
 نشر من قبل Marco Tulio Angulo
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Network reconstruction is the first step towards understanding, diagnosing and controlling the dynamics of complex networked systems. It allows us to infer properties of the interaction matrix, which characterizes how nodes in a system directly interact with each other. Despite a decade of extensive studies, network reconstruction remains an outstanding challenge. The fundamental limitations governing which properties of the interaction matrix (e.g., adjacency pattern, sign pattern and degree sequence) can be inferred from given temporal data of individual nodes remain unknown. Here we rigorously derive necessary conditions to reconstruct any property of the interaction matrix. These conditions characterize how uncertain can we be about the coupling functions that characterize the interactions between nodes, and how informative does the measured temporal data need to be; rendering two classes of fundamental limitations of network reconstruction. Counterintuitively, we find that reconstructing any property of the interaction matrix is generically as difficult as reconstructing the interaction matrix itself, requiring equally informative temporal data. Revealing these fundamental limitations shed light on the design of better network reconstruction algorithms, which offer practical improvements over existing methods.

قيم البحث

اقرأ أيضاً

We develop methods to efficiently reconstruct the topology and line parameters of a power grid from the measurement of nodal variables. We propose two compressed sensing algorithms that minimize the amount of necessary measurement resources by exploi ting network sparsity, symmetry of connections and potential prior knowledge about the connectivity. The algorithms are reciprocal to established state estimation methods, where nodal variables are estimated from few measurements given the network structure. Hence, they enable an advanced grid monitoring where both state and structure of a grid are subject to uncertainties or missing information.
In many large systems, such as those encountered in biology or economics, the dynamics are nonlinear and are only known very coarsely. It is often the case, however, that the signs (excitation or inhibition) of individual interactions are known. This paper extends to nonlinear systems the classical criteria of linear sign stability introduced in the 70s, yielding simple sufficient conditions to determine stability using only the sign patterns of the interactions.
We study in this paper certain properties of the responses of dynamical systems to external inputs. The motivation arises from molecular systems biology. and, in particular, the recent discovery of an important transient property, related to Webers l aw in psychophysics: fold-change detection in adapting systems, the property that scale uncertainty does not affect responses. FCD appears to play an important role in key signaling transduction mechanisms in eukaryotes, including the ERK and Wnt pathways, as well as in E.coli and possibly other prokaryotic chemotaxis pathways. In this paper, we provide further theoretical results regarding this property. Far more generally, we develop a necessary and sufficient characterization of adapting systems whose transient behaviors are invariant under the action of a set (often, a group) of symmetries in their sensory field. A particular instance is FCD, which amounts to invariance under the action of the multiplicative group of positive real numbers. Our main result is framed in terms of a notion which extends equivariant actions of compact Lie groups. Its proof relies upon control theoretic tools, and in particular the uniqueness theorem for minimal realizations.
Flexible loads, e.g. thermostatically controlled loads (TCLs), are technically feasible to participate in demand response (DR) programs. On the other hand, there is a number of challenges that need to be resolved before it can be implemented in pract ice en masse. First, individual TCLs must be aggregated and operated in sync to scale DR benefits. Second, the uncertainty of TCLs needs to be accounted for. Third, exercising the flexibility of TCLs needs to be coordinated with distribution system operations to avoid unnecessary power losses and compliance with power flow and voltage limits. This paper addresses these challenges. We propose a network-constrained, open-loop, stochastic optimal control formulation. The first part of this formulation represents ensembles of collocated TCLs modelled by an aggregated Markov Process (MP), where each MP state is associated with a given power consumption or production level. The second part extends MPs to a multi-period distribution power flow optimization. In this optimization, the control of TCL ensembles is regulated by transition probability matrices and physically enabled by local active and reactive power controls at TCL locations. The optimization is solved with a Spatio-Temporal Dual Decomposition (ST-D2) algorithm. The performance of the proposed formulation and algorithm is demonstrated on the IEEE 33-bus distribution model.
We present an algorithm for controlling and scheduling multiple linear time-invariant processes on a shared bandwidth limited communication network using adaptive sampling intervals. The controller is centralized and computes at every sampling instan t not only the new control command for a process, but also decides the time interval to wait until taking the next sample. The approach relies on model predictive control ideas, where the cost function penalizes the state and control effort as well as the time interval until the next sample is taken. The latter is introduced in order to generate an adaptive sampling scheme for the overall system such that the sampling time increases as the norm of the system state goes to zero. The paper presents a method for synthesizing such a predictive controller and gives explicit sufficient conditions for when it is stabilizing. Further explicit conditions are given which guarantee conflict free transmissions on the network. It is shown that the optimization problem may be solved off-line and that the controller can be implemented as a lookup table of state feedback gains. Simulation studies which compare the proposed algorithm to periodic sampling illustrate potential performance gains.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا