ترغب بنشر مسار تعليمي؟ اضغط هنا

The single-layered ruthenate Sr$_2$RuO$_4$ is one of the most enigmatic unconventional superconductors. While for many years it was thought to be the best candidate for a chiral $p$-wave superconducting ground state, desirable for topological quantum computations, recent experiments suggest a singlet state, ruling out the original $p$-wave scenario. The superconductivity as well as the properties of the multi-layered compounds of the ruthenate perovskites are strongly influenced by a van Hove singularity in proximity of the Fermi energy. Tiny structural distortions move the van Hove singularity across the Fermi energy with dramatic consequences for the physical properties. Here, we determine the electronic structure of the van Hove singularity in the surface layer of Sr$_2$RuO$_4$ by quasiparticle interference imaging. We trace its dispersion and demonstrate from a model calculation accounting for the full vacuum overlap of the wave functions that its detection is facilitated through the octahedral rotations in the surface layer.
Understanding the origin of the magnetism of high temperature superconductors is crucial for establishing their unconventional pairing mechanism. Recently, theory predicts that FeSe is close to a magnetic quantum critical point, and thus weak perturb ations such as impurities could induce local magnetic moments. To elucidate such quantum instability, we have employed scanning tunneling microscopy and spectroscopy. In particular, we have grown FeSe film on superconducting Pb(111) using molecular beam epitaxy and investigated magnetic excitation caused by impurities in the proximity-induced superconducting gap of FeSe. Our study provides a deep insight into the origin of the magnetic ordering of FeSe by showing the way local magnetic moments develop in response to impurities near the magnetic quantum critical point.
Inelastic neutron scattering has been used to study the magneto-elastic excitations in the multiferroic manganite hexagonal YMnO$_3$. An avoided crossing is found between magnon and phonon modes close to the Brillouin zone boundary in the $(a,b)$-pla ne. Neutron polarization analysis reveals that this mode has mixed magnon-phonon character. An external magnetic field along the $c$-axis is observed to cause a linear field-induced splitting of one of the spin wave branches. A theoretical description is performed, using a Heisenberg model of localized spins, acoustic phonon modes and a magneto-elastic coupling via the single-ion magnetostriction. The model quantitatively reproduces the dispersion and intensities of all modes in the full Brillouin zone, describes the observed magnon-phonon hybridized modes, and quantifies the magneto-elastic coupling. The combined information, including the field-induced magnon splitting, allows us to exclude several of the earlier proposed models and point to the correct magnetic ground state symmetry, and provides an effective dynamic model relevant for the multiferroic hexagonal manganites.
Since the discovery of iron-based superconductors, a number of theories have been put forward to explain the qualitative origin of pairing, but there have been few attempts to make quantitative, material-specific comparisons to experimental results. The spin-fluctuation theory of electronic pairing, based on first-principles electronic structure calculations, makes predictions for the superconducting gap. Within the same framework, the surface wave functions may also be calculated, allowing, e.g., for detailed comparisons between theoretical results and measured scanning tunneling topographs and spectra. Here we present such a comparison between theory and experiment on the Fe-based superconductor LiFeAs. Results for the homogeneous surface as well as impurity states are presented as a benchmark test of the theory. For the homogeneous system, we argue that the maxima of topographic image intensity may be located at positions above either the As or Li atoms, depending on tip height and the setpoint current of the measurement. We further report the experimental observation of transitions between As and Li-registered lattices as functions of both tip height and setpoint bias, in agreement with this prediction. Next, we give a detailed comparison between the simulated scanning tunneling microscopy images of transition-metal defects with experiment. Finally, we discuss possible extensions of the current framework to obtain a theory with true predictive power for scanning tunneling microscopy in Fe-based systems.
We study the spin-fluctuation-mediated superconducting pairing gap in a weak-coupling approach to the Hubbard model for a two dimensional square lattice in the paramagnetic state. Performing a comprehensive theoretical study of the phase diagram as a function of filling, we find that the superconducting gap exhibits transitions from p-wave at very low electron fillings to d_{x^2-y^2}-wave symmetry close to half filling in agreement with previous reports. At intermediate filling levels, different gap symmetries appear as a consequence of the changes in the Fermi surface topology and the associated structure of the spin susceptibility. In particular, the vicinity of a van Hove singularity in the electronic structure close to the Fermi level has important consequences for the gap structure in favoring the otherwise sub-dominant triplet solution over the singlet d-wave solution. By solving the full gap equation, we find that the energetically favorable triplet solutions are chiral and break time reversal symmetry. Finally, we also calculate the detailed angular gap structure of the quasi-particle spectrum, and show how spin-fluctuation-mediated pairing leads to significant deviations from the first harmonics both in the singlet d_{x^2-y^2} gap as well as the chiral triplet gap solution.
We provide a band structure with low-energy properties consistent with recent photoemission and quantum oscillations measurements on FeSe, assuming mean-field like s and/or d-wave orbital ordering at the structural transition. We show how the resulti ng model provides a consistent explanation of the temperature dependence of the measured Knight shift and the spin-relaxation rate. Furthermore, the superconducting gap structure obtained from spin fluctuation theory exhibits nodes on the electron pockets, consistent with the V-shaped density of states obtained by tunneling spectroscopy on this material, and the temperature dependence of the London penetration depth. Our studies prove that the recent experimental observations of the electronic properties of FeSe are consistent with orbital order, but leave open the microscopic origin of the unusual band structure of this material.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا