ﻻ يوجد ملخص باللغة العربية
Understanding the origin of the magnetism of high temperature superconductors is crucial for establishing their unconventional pairing mechanism. Recently, theory predicts that FeSe is close to a magnetic quantum critical point, and thus weak perturbations such as impurities could induce local magnetic moments. To elucidate such quantum instability, we have employed scanning tunneling microscopy and spectroscopy. In particular, we have grown FeSe film on superconducting Pb(111) using molecular beam epitaxy and investigated magnetic excitation caused by impurities in the proximity-induced superconducting gap of FeSe. Our study provides a deep insight into the origin of the magnetic ordering of FeSe by showing the way local magnetic moments develop in response to impurities near the magnetic quantum critical point.
We investigate properties of a spin-1 Heisenberg model with extended and biquadratic interactions, which captures crucial aspects of the low energy physics in FeSe. While we show that the model exhibits a rich phase diagram with four different magnet
FeSe is classed as a Hunds metal, with a multiplicity of $d$ bands near the Fermi level. Correlations in Hunds metals mostly originate from the exchange parameter emph{J}, which can drive a strong orbital selectivity in the correlations. The Fe-chalc
The origin of the pseudogap behavior, found in many high-$T_c$ superconductors, remains one of the greatest puzzles in condensed matter physics. One possible mechanism is fermionic incoherence, which near a quantum critical point allows pair formatio
We investigate the influence of itinerant carriers on dynamics and fluctuation of local moments in Fe-based superconductors, via linear spin-wave analysis of a spin-fermion model containing both itinerant and local degrees of freedom. Surprisingly ag
Shubnikov-de Haas (SdH) oscillations and upper critical magnetic field ($H_{c2}$) of the iron-based superconductor FeSe ($T_c$ = 8.6 K) have been studied by tunnel diode oscillator-based measurements in magnetic fields of up to 55 T and temperatures