Do you want to publish a course? Click here

An Empirical Study of Generating Texts for Search Engine Advertising

دراسة تجريبية لتوليد النصوص لإعلان محرك البحث

382   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Although there are many studies on neural language generation (NLG), few trials are put into the real world, especially in the advertising domain. Generating ads with NLG models can help copywriters in their creation. However, few studies have adequately evaluated the effect of generated ads with actual serving included because it requires a large amount of training data and a particular environment. In this paper, we demonstrate a practical use case of generating ad-text with an NLG model. Specially, we show how to improve the ads' impact, deploy models to a product, and evaluate the generated ads.



References used
https://aclanthology.org/
rate research

Read More

1535 - Google 2015 كتاب
The basics of sEO, create unique page titles, improve the website structure, improve the content, dealing with crawlers, improve SEO for mobile devices, using analytics and promotional operating
Recognizing named entities in short search engine queries is a difficult task due to their weaker contextual information compared to long sentences. Standard named entity recognition (NER) systems that are trained on grammatically correct and long se ntences fail to perform well on such queries. In this study, we share our efforts towards creating a cleaned and labeled dataset of real Turkish search engine queries (TR-SEQ) and introduce an extended label set to satisfy the search engine needs. A NER system is trained by applying the state-of-the-art deep learning method BERT to the collected data and its high performance on search engine queries is reported. Moreover, we compare our results with the state-of-the-art Turkish NER systems.
Smooth and effective communication requires the ability to perform latent or explicit commonsense inference. Prior commonsense reasoning benchmarks (such as SocialIQA and CommonsenseQA) mainly focus on the discriminative task of choosing the right an swer from a set of candidates, and do not involve interactive language generation as in dialogue. Moreover, existing dialogue datasets do not explicitly focus on exhibiting commonsense as a facet. In this paper, we present an empirical study of commonsense in dialogue response generation. We first auto-extract commonsensical dialogues from existing dialogue datasets by leveraging ConceptNet, a commonsense knowledge graph. Furthermore, building on social contexts/situations in SocialIQA, we collect a new dialogue dataset with 25K dialogues aimed at exhibiting social commonsense in an interactive setting. We evaluate response generation models trained using these datasets and find that models trained on both extracted and our collected data produce responses that consistently exhibit more commonsense than baselines. Finally we propose an approach for automatic evaluation of commonsense that relies on features derived from ConceptNet and pre-trained language and dialog models, and show reasonable correlation with human evaluation of responses' commonsense quality.
Word embedding techniques depend heavily on the frequencies of words in the corpus, and are negatively impacted by failures in providing reliable representations for low-frequency words or unseen words during training. To address this problem, we pro pose an algorithm to learn embeddings for rare words based on an Internet search engine and the spatial location relationships. Our algorithm proceeds in two steps. We firstly retrieve webpages corresponding to the rare word through the search engine and parse the returned results to extract a set of most related words. We average the vectors of the related words as the initial vector of the rare word. Then, the location of the rare word in the vector space is iteratively fine-tuned according to the order of its relevances to the related words. Compared to other approaches, our algorithm can learn more accurate representations for a wider range of vocabulary. We evaluate our learned rare-word embeddings on the word relatedness task, and the experimental results show that our algorithm achieves state-of-the-art performance.
This research designs web search engine kernel overrule in searching of specific fields and indexing indicated sites. This research contain information about search in web , retrieval system , types of search engines and basic architectures of bui lding search engines .It suggests search engine architecture kernel of dedicated search engine to do final planner of search engine architecture ,and build parts of search engine and execute test to get results .

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا