Do you want to publish a course? Click here

Tube-enhanced Multi-stage MPC for Flexible Robust Control of Constrained Linear Systems with Additive and Parametric Uncertainties

58   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The trade-off between optimality and complexity has been one of the most important challenges in the field of robust Model Predictive Control (MPC). To address the challenge, we propose a flexible robust MPC scheme by synergizing the multi-stage and tube-based MPC approaches. The key idea is to exploit the non-conservatism of the multi-stage MPC and the simplicity of the tube-based MPC. The proposed scheme provides two options for the user to determine the trade-off depending on the application: the choice of the robust horizon and the classification of the uncertainties. Beyond the robust horizon, the branching of the scenario-tree employed in multi-stage MPC is avoided with the help of tubes. The growth of the problem size with respect to the number of uncertainties is reduced by handling emph{small} uncertainties via an invariant tube that can be computed offline. This results in linear growth of the problem size beyond the robust horizon and no growth of the problem size concerning small magnitude uncertainties. The proposed approach helps to achieve a desired trade-off between optimality and complexity compared to existing robust MPC approaches. We show that the proposed approach is robustly asymptotically stable. Its advantages are demonstrated for a CSTR example.



rate research

Read More

We consider the problem of stabilization of a linear system, under state and control constraints, and subject to bounded disturbances and unknown parameters in the state matrix. First, using a simple least square solution and available noisy measurements, the set of admissible values for parameters is evaluated. Second, for the estimated set of parameter values and the corresponding linear interval model of the system, two interval predictors are recalled and an unconstrained stabilizing control is designed that uses the predicted intervals. Third, to guarantee the robust constraint satisfaction, a model predictive control algorithm is developed, which is based on solution of an optimization problem posed for the interval predictor. The conditions for recursive feasibility and asymptotic performance are established. Efficiency of the proposed control framework is illustrated by numeric simulations.
428 - Ugo Rosolia , Xiaojing Zhang , 2019
A robust Learning Model Predictive Controller (LMPC) for uncertain systems performing iterative tasks is presented. At each iteration of the control task the closed-loop state, input and cost are stored and used in the controller design. This paper first illustrates how to construct robust invariant sets and safe control policies exploiting historical data. Then, we propose an iterative LMPC design procedure, where data generated by a robust controller at iteration $j$ are used to design a robust LMPC at the next $j+1$ iteration. We show that this procedure allows us to iteratively enlarge the domain of the control policy and it guarantees recursive constraints satisfaction, input to state stability and performance bounds for the certainty equivalent closed-loop system. The use of an adaptive prediction horizon is the key element of the proposed design. The effectiveness of the proposed control scheme is illustrated on a linear system subject to bounded additive disturbance.
This paper deals with the computation of the largest robust control invariant sets (RCISs) of constrained nonlinear systems. The proposed approach is based on casting the search for the invariant set as a graph theoretical problem. Specifically, a general class of discrete-time time-invariant nonlinear systems is considered. First, the dynamics of a nonlinear system is approximated with a directed graph. Subsequently, the condition for robust control invariance is derived and an algorithm for computing the robust control invariant set is presented. The algorithm combines the iterative subdivision technique with the robust control invariance condition to produce outer approximations of the largest robust control invariant set at each iteration. Following this, we prove convergence of the algorithm to the largest RCIS as the iterations proceed to infinity. Based on the developed algorithms, an algorithm to compute inner approximations of the RCIS is also presented. A special case of input affine and disturbance affine systems is also considered. Finally, two numerical examples are presented to demonstrate the efficacy of the proposed method.
203 - Taekyoo Kim , Donggil Lee , 2020
In this paper, we propose a distributed output-feedback controller design for a linear time-invariant plant interacting with networked agents, where interaction and communication of each agent are limited to its associated input-output channel and its neighboring agents, respectively. The design scheme has a decentralized structure so that each agent can self-organize its own controller using the locally accessible information only. Furthermore, under mild conditions, the proposed controller is capable of maintaining stability even when agents join/leave the network during the operation without requiring any manipulation on other agents. This plug-and-play feature leads to efficiency for controller maintenance as well as resilience against changes in interconnections. The key idea enabling these features is the use of Bass algorithm, which allows the distributed computation of stabilizing gains by solving a Lyapunov equation in a distributed manner.
This paper proposes a robust transient stability constrained optimal power flow problem that addresses renewable uncertainties by the coordination of generation re-dispatch and power flow router (PFR) tuning.PFR refers to a general type of network-side controller that enlarges the feasible region of the OPF problem. The coordination between network-side and generator-side control in the proposed model is more general than the traditional methods which focus on generation dispatch only. An offline-online solution framework is developed to solve the problem efficiently. Under this framework the original problem is significantly simplified, so that we only need to solve a low-dimensional deterministic problem at the online stage to achieve real-time implementation with a high robustness level. The proposed method is verified on the modified New England 39-bus system. Numerical results demonstrate that the proposed method is efficient and shows good performance on economy and robustness.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا