Do you want to publish a course? Click here

Decentralized Design and Plug-and-Play Distributed Control for Linear Multi-Channel Systems

204   0   0.0 ( 0 )
 Added by Taekyoo Kim
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In this paper, we propose a distributed output-feedback controller design for a linear time-invariant plant interacting with networked agents, where interaction and communication of each agent are limited to its associated input-output channel and its neighboring agents, respectively. The design scheme has a decentralized structure so that each agent can self-organize its own controller using the locally accessible information only. Furthermore, under mild conditions, the proposed controller is capable of maintaining stability even when agents join/leave the network during the operation without requiring any manipulation on other agents. This plug-and-play feature leads to efficiency for controller maintenance as well as resilience against changes in interconnections. The key idea enabling these features is the use of Bass algorithm, which allows the distributed computation of stabilizing gains by solving a Lyapunov equation in a distributed manner.



rate research

Read More

We study the problem of controlling multi-agent systems under a set of signal temporal logic tasks. Signal temporal logic is a formalism that is used to express time and space constraints for dynamical systems. Recent methods to solve the control synthesis problem for single-agent systems under signal temporal logic tasks are, however, subject to a high computational complexity. Methods for multi-agent systems scale at least linearly with the number of agents and induce even higher computational burdens. We propose a computationally-efficient control strategy to solve the multi-agent control synthesis problem that results in a robust satisfaction of a set of signal temporal logic tasks. In particular, a decentralized feedback control law is proposed that is based on time-varying control barrier functions. The obtained control law is discontinuous and formal guarantees are provided by nonsmooth analysis. Simulations show the efficacy of the presented method.
The linear-quadratic controller is one of the fundamental problems in control theory. The optimal solution is a linear controller that requires access to the state of the entire system at any given time. When considering a network system, this renders the optimal controller a centralized one. The interconnected nature of a network system often demands a distributed controller, where different components of the system are controlled based only on local information. Unlike the classical centralized case, obtaining the optimal distributed controller is usually an intractable problem. Thus, we adopt a graph neural network (GNN) as a parametrization of distributed controllers. GNNs are naturally local and have distributed architectures, making them well suited for learning nonlinear distributed controllers. By casting the linear-quadratic problem as a self-supervised learning problem, we are able to find the best GNN-based distributed controller. We also derive sufficient conditions for the resulting closed-loop system to be stable. We run extensive simulations to study the performance of GNN-based distributed controllers and showcase that they are a computationally efficient parametrization with scalability and transferability capabilities.
The modern power system features high penetration of power converters due to the development of renewables, HVDC, etc. Currently, the controller design and parameter tuning of power converters heavily rely on rich engineering experience and extrapolation from a single converter system, which may lead to inferior performance or even instabilities under variable grid conditions. In this paper, we propose an $H_{infty}$-control design framework to provide a systematic way for the robust and optimal control design of power converters. We discuss how to choose weighting functions to achieve anticipated and robust performance with regards to multiple control objectives. Further, we show that by a proper choice of the weighting functions, the converter can be conveniently specified as grid-forming or grid-following in terms of small-signal dynamics. Moreover, this paper first proposes a decentralized stability criterion based on the small gain theorem, which enables us to guarantee the global small-signal stability of a multi-converter system through local control design of the power converters. We provide high-fidelity nonlinear simulations and hardware-in-the-loop (HIL) real-time simulations to illustrate the effectiveness of our method.
This paper studies a scalable control method for multi-zone heating, ventilation and air-conditioning (HVAC) systems to optimize the energy cost for maintaining thermal comfort and indoor air quality (IAQ) (represented by CO2) simultaneously. This problem is computationally challenging due to the complex system dynamics, various spatial and temporal couplings as well as multiple control variables to be coordinated. To address the challenges, we propose a two-level distributed method (TLDM) with a upper level and lower level control integrated. The upper level computes zone mass flow rates for maintaining zone thermal comfort with minimal energy cost, and then the lower level strategically regulates zone mass flow rates and the ventilation rate to achieve IAQ while preserving the near energy saving performance of upper level. As both the upper and lower level computation are deployed in a distributed manner, the proposed method is scalable and computationally efficient. The near-optimal performance of the method in energy cost saving is demonstrated through comparison with the centralized method. In addition, the comparisons with the existing distributed method show that our method can provide IAQ with only little increase of energy cost while the latter fails. Moreover, we demonstrate our method outperforms the demand controlled ventilation strategies (DCVs) for IAQ management with about 8-10% energy cost reduction.
In this paper, a distributed learning leader-follower consensus protocol based on Gaussian process regression for a class of nonlinear multi-agent systems with unknown dynamics is designed. We propose a distributed learning approach to predict the residual dynamics for each agent. The stability of the consensus protocol using the data-driven model of the dynamics is shown via Lyapunov analysis. The followers ultimately synchronize to the leader with guaranteed error bounds by applying the proposed control law with a high probability. The effectiveness and the applicability of the developed protocol are demonstrated by simulation examples.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا