This paper proposes a robust transient stability constrained optimal power flow problem that addresses renewable uncertainties by the coordination of generation re-dispatch and power flow router (PFR) tuning.PFR refers to a general type of network-side controller that enlarges the feasible region of the OPF problem. The coordination between network-side and generator-side control in the proposed model is more general than the traditional methods which focus on generation dispatch only. An offline-online solution framework is developed to solve the problem efficiently. Under this framework the original problem is significantly simplified, so that we only need to solve a low-dimensional deterministic problem at the online stage to achieve real-time implementation with a high robustness level. The proposed method is verified on the modified New England 39-bus system. Numerical results demonstrate that the proposed method is efficient and shows good performance on economy and robustness.
High penetration of renewable generation poses great challenge to power system operation due to its uncertain nature. In droop-controlled microgrids, the voltage volatility induced by renewable uncertainties is aggravated by the high droop gains. This paper proposes a chance-constrained optimal power flow (CC-OPF) problem with power flow routers (PFRs) to better regulate the voltage profile in microgrids. PFR refer to a general type of network-side controller that brings more flexibility to the power network. Comparing with the normal CC-OPF that relies on power injection flexibility only, the proposed model introduces a new dimension of control from power network to enhance system performance under renewable uncertainties. Since the inclusion of PFRs complicates the problem and makes common solvers no longer apply directly, we design an iterative solution algorithm. For the subproblem in each iteration, chance constraints are transformed into equivalent deterministic ones via sensitivity analysis, so that the subproblem can be efficiently solved by the convex relaxation method. The proposed method is verified on the modified IEEE 33-bus system and the results show that PFRs make a significant contribution to mitigating the voltage volatility and make the system operate in a more economic and secure way.
Widespread utilization of renewable energy sources (RESs) in subtransmission systems causes serious problems on power quality, such as voltage violations, leading to significant curtailment of renewables. This is due to the inherent variability of renewables and the high R/X ratio of the subtransmission system. To achieve full utilization of renewables, battery energy storage systems (BESSs) are commonly used to mitigate the negative effects of massive fluctuations of RESs. Power flow router (PFR), which can be regarded as a general type of network-side controller, has also been verified to enhance the grid flexibility for accommodating renewables. In this paper, we investigate the value of PFR in helping BESSs for renewable power accommodation. The performance of PFR is evaluated with the minimum BESS capacity required for zero renewable power curtailment with and without PFRs. The operational constraints of BESSs and the terminal voltage property of PFRs are considered in a multi-period optimization model. The proposed model is tested through numerical simulations on a modified IEEE 30-bus subtransmission system and a remarkable result shows that 15% reduction of BESS capacity can be achieved by installing PFRs on a single line.
This paper introduces network flexibility into the chance constrained economic dispatch (CCED). In the proposed model, both power generations and line susceptances become variables to minimize the expected generation cost and guarantee a low probability of constraint violation in terms of generations and line flows under renewable uncertainties. We figure out the mechanism of network flexibility against uncertainties from the analytical form of CCED. On one hand, renewable uncertainties shrink the usable line capacities in the line flow constraints and aggravate transmission congestion. On the other hand, network flexibility significantly mitigates congestion by regulating the base-case line flows and reducing the line capacity shrinkage caused by uncertainties. Further, we propose an alternate iteration solver for this problem, which is efficient. With duality theory, we propose two convex subproblems with respect to generation-related variables and network-related variables, respectively. A satisfactory solution can be obtained by alternately solving these two subproblems. The case studies on the IEEE 14-bus system and IEEE 118-bus system suggest that network flexibility contributes much to operational economy under renewable uncertainties.
Determining contingency aware dispatch decisions by solving a security-constrained optimal power flow (SCOPF) is challenging for real-world power systems, as the high problem dimensionality often leads to impractical computational requirements. This problem becomes more severe when the SCOPF has to be solved not only for a single instance, but for multiple periods, e.g. in the context of electricity market analyses. This paper proposes an algorithm that identifies the minimal set of constraints that exactly define the space of feasible nodal injections for a given network and contingency scenarios. By internalizing the technical limits of the nodal injections and enforcing a minimal worst-case impact of contingencies to line flows, computational effort can be further improved. The case study applies and analyzes the methods on the IEEE 118 and A&M 2000 bus systems, as well as the German and European transmission systems. In all tested cases the proposed algorithm identifies at least 95% of the network and security constraints as redundant, leading to significant SCOPF solve time reductions. Scalability and practical implementation are explicitly discussed. The code and input data of the case study is published supplementary to the paper under an open-source license.
Distribution grid agents are obliged to exchange and disclose their states explicitly to neighboring regions to enable distributed optimal power flow dispatch. However, the states contain sensitive information of individual agents, such as voltage and current measurements. These measurements can be inferred by adversaries, such as other participating agents or eavesdroppers. To address the issue, we propose a privacy-preserving distributed optimal power flow (OPF) algorithm based on partially homomorphic encryption (PHE). First of all, we exploit the alternating direction method of multipliers (ADMM) to solve the OPF in a distributed fashion. In this way, the dual update of ADMM can be encrypted by PHE. We further relax the augmented term of the primal update of ADMM with the $ell_1$-norm regularization. In addition, we transform the relaxed ADMM with the $ell_1$-norm regularization to a semidefinite program (SDP), and prove that this transformation is exact. The SDP can be solved locally with only the sign messages from neighboring agents, which preserves the privacy of the primal update. At last, we strictly prove the privacy preservation guarantee of the proposed algorithm. Numerical case studies validate the effectiveness and exactness of the proposed approach.