Do you want to publish a course? Click here

Computing robust control invariant sets of constrained nonlinear systems: A graph algorithm approach

225   0   0.0 ( 0 )
 Added by Jinfeng Liu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

This paper deals with the computation of the largest robust control invariant sets (RCISs) of constrained nonlinear systems. The proposed approach is based on casting the search for the invariant set as a graph theoretical problem. Specifically, a general class of discrete-time time-invariant nonlinear systems is considered. First, the dynamics of a nonlinear system is approximated with a directed graph. Subsequently, the condition for robust control invariance is derived and an algorithm for computing the robust control invariant set is presented. The algorithm combines the iterative subdivision technique with the robust control invariance condition to produce outer approximations of the largest robust control invariant set at each iteration. Following this, we prove convergence of the algorithm to the largest RCIS as the iterations proceed to infinity. Based on the developed algorithms, an algorithm to compute inner approximations of the RCIS is also presented. A special case of input affine and disturbance affine systems is also considered. Finally, two numerical examples are presented to demonstrate the efficacy of the proposed method.



rate research

Read More

In this paper, a sample-based procedure for obtaining simple and computable approximations of chance-constrained sets is proposed. The procedure allows to control the complexity of the approximating set, by defining families of simple-approximating sets of given complexity. A probabilistic scaling procedure then allows to rescale these sets to obtain the desired probabilistic guarantees. The proposed approach is shown to be applicable in several problem in systems and control, such as the design of Stochastic Model Predictive Control schemes or the solution of probabilistic set membership estimation problems.
We present a method for incremental modeling and time-varying control of unknown nonlinear systems. The method combines elements of evolving intelligence, granular machine learning, and multi-variable control. We propose a State-Space Fuzzy-set-Based evolving Modeling (SS-FBeM) approach. The resulting fuzzy model is structurally and parametrically developed from a data stream with focus on memory and data coverage. The fuzzy controller also evolves, based on the data instances and fuzzy model parameters. Its local gains are redesigned in real-time -- whenever the corresponding local fuzzy models change -- from the solution of a linear matrix inequality problem derived from a fuzzy Lyapunov function and bounded input conditions. We have shown one-step prediction and asymptotic stabilization of the Henon chaos.
Discrete abstractions have become a standard approach to assist control synthesis under complex specifications. Most techniques for the construction of a discrete abstraction for a continuous-time system require time-space discretization of the concrete system, which constitutes property satisfaction for the continuous-time system non-trivial. In this work, we aim at relaxing this requirement by introducing a control interface. Firstly, we connect the continuous-time uncertain concrete system with its discrete deterministic state-space abstraction with a control interface. Then, a novel stability notion called $eta$-approximate controlled globally practically stable, and a new simulation relation called robust approximate simulation relation are proposed. It is shown that the uncertain concrete system, under the condition that there exists an admissible control interface such that the augmented system (composed of the concrete system and its abstraction) can be made $eta$-approximate controlled globally practically stable, robustly approximately simulates its discrete abstraction. The effectiveness of the proposed results is illustrated by two simulation examples.
A logical function can be used to characterizing a property of a state of Boolean network (BN), which is considered as an aggregation of states. To illustrate the dynamics of a set of logical functions, which characterize our concerned properties of a BN, the invariant subspace containing the set of logical functions is proposed, and its properties are investigated. Then the invariant subspace of Boolean control network (BCN) is also proposed. The dynamics of invariant subspace of BCN is also invariant. Finally, using outputs as the set of logical functions, the minimum realization of BCN is proposed, which provides a possible solution to overcome the computational complexity of large scale BNs/BCNs.
This paper focuses on developing a new paradigm motivated by investigating the consensus problem of networked Lagrangian systems with time-varying delay and switching topologies. We present adaptive controllers with piecewise continuous or arbitrary times differentiable control torques for realizing consensus of Lagrangian systems, extending the results in the literature. This specific study motivates the formulation of a new paradigm referred to as forwardstepping, which is shown to be a systematic tool for solving various nonlinear control problems. One distinctive point associated with forwardstepping is that the order of the reference dynamics is typically specified to be equal to or higher than that of the original nonlinear system, and the reference dynamics and the nonlinear system are governed by a differential/dynamic-cascaded structure. The order invariance or increment of the specified reference dynamics with respect to the nonlinear system and their differential/dynamic-cascaded structure expands significantly the design freedom and thus facilitates the seeking of solutions to many nonlinear control problems which would otherwise often be intractable.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا