We analyze the self-similarity approach applied to study the hadron production in p-p and A-A collisions. This approach allows us to describe rather well the ratio of the proton to anti-proton yields in A-A collisions as a function of the energy at a wide range from a few GeV to a few TeV. We suggest a modification of this approach to describe rather well the inclusive spectra of hadrons produced in $pp$ collisions at different initial energies from the AGS to LHC.
The calculation of inclusive spectra of pions produced in $pp$ and $AA$ collisions as a function of rapidity $y$ is presented within the self-similarity approach. It is shown that at not large rapidities $y$ one can obtain the analytical form of the self-similarity function $Pi(y,p_t)$ dependent of $y$ and hadron transverse momentum $p_t$. A satisfactory description of data on the rapidity spectra at $|y|leq$ 0.3 is illustrated within a good agreement. The universal energy dependence of these spectra is also shown.
We present theoretical model comparison with published ALICE results for D-mesons (D$^0$, D$^+$ and D$^{*+}$) in $p$+$p$ collisions at $sqrt{s}$ = 7 TeV and $p$+Pb collisions at $sqrt{s_{NN}}$ = 5.02 TeV. Event generator HIJING, transport calculation of AMPT and calculations from NLO(MNR) and FONLL have been used for this study. We found that HIJING and AMPT model predictions are matching with published D-meson cross-sections in $p$+$p$ collisions, while both under-predict the same in $p$+Pb collisions. Attempts were made to explain the $R_{pPb}$ data using NLO-pQCD(MNR), FONLL and other above mentioned models.
Inclusive and semi-inclusive measurements are presented for antiproton ($bar{p}$) production in proton-nucleus collisions at the AGS. The inclusive yields per event increase strongly with increasing beam energy and decrease slightly with increasing target mass. The $bar{p}$ yield in 17.5 GeV/c p+Au collisions decreases with grey track multiplicity, $N_g$, for $N_g>0$, consistent with annihilation within the target nucleus. The relationship between $N_g$ and the number of scatterings of the proton in the nucleus is used to estimate the $bar{p}$ annihilation cross section in the nuclear medium. The resulting cross section is at least a factor of five smaller than the free $bar{p}-p$ annihilation cross section when assuming a small or negligible formation time. Only with a long formation time can the data be described with the free $bar{p}-p$ annihilation cross section.
Effects of strong longitudinal colour electric fields (SCF), shadowing, and quenching on the open prompt charm mesons (D$^0$, D$^+$, D$^{*+}$, D${_s}{^+}$) production in central Pb + Pb collisions at $sqrt{s_{rm NN}}$ = 2.76 TeV are investigated within the framework of the {small HIJING/B=B v2.0} model. We compute the nuclear modification factor $R_{rm PbPb}^{rm D}$, and show that the above nuclear effects constitute important dynamical mechanisms in the description of experimental data. The strength of colour fields (as characterized by the string tension $kappa$), partonic energy loss and jet quenching process lead to a suppression factor consistent with recent published data. Predictions for future beauty mesons measurements have been included. Ratios of strange to non-strange prompt charm mesons in central Pb + Pb and minimum bias (MB) $ p + p$ collisions at 2.76 TeV are also discussed. Minimum bias $p + p$ collisions which constitute theoretical baseline in our calculations are studied at the centre of mass energies $sqrt{s}$ = 2.76 TeV and 7 TeV.
D.A. Artemenkov
,G.I. Lykasov
,A.I. Malakhov
.
(2015)
.
"Self-similarity of hadron production in p-p and A-A collisions at high energies"
.
Gennady Lykasov I
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا