No Arabic abstract
Inclusive and semi-inclusive measurements are presented for antiproton ($bar{p}$) production in proton-nucleus collisions at the AGS. The inclusive yields per event increase strongly with increasing beam energy and decrease slightly with increasing target mass. The $bar{p}$ yield in 17.5 GeV/c p+Au collisions decreases with grey track multiplicity, $N_g$, for $N_g>0$, consistent with annihilation within the target nucleus. The relationship between $N_g$ and the number of scatterings of the proton in the nucleus is used to estimate the $bar{p}$ annihilation cross section in the nuclear medium. The resulting cross section is at least a factor of five smaller than the free $bar{p}-p$ annihilation cross section when assuming a small or negligible formation time. Only with a long formation time can the data be described with the free $bar{p}-p$ annihilation cross section.
A relativistic transport model is used to study Xi- production in 2-11A GeV Au+Au collisions. Introducing the strangeness-exchange reactions between antikaons and hyperons as the sources for Xi-, we find that the cascade yield in these collisions is in reasonable agreement with the data. Although the Xi- abundance does not reach chemical equilibrium unless the cross section for strangeness-exchange reactions is enhanced by six times, it exhibits the strongest enhancement with increasing centrality of collision and with increasing beam energy.
An enhancement of antiprotons produced in p+d reaction in comparison with ones in p+p elementary reaction is investigated. In the neighborhood of subthreshold energy the enhancement is caused by the difference of available energies for antiproton production. The cross section in p+d reaction, on the other hand, becomes just twice of the one in elementary p+p reaction at the incident energy far from the threshold energy when non-nucleonic components in deuteron target are not considered.
Directed flow of deuterons, tritons, $^3$He, and $^4$He is studied in Au+Au collisions at a beam momentum of about 10.8 $A$ GeV/c. Flow of all particles is analyzed as a function of transverse momentum for different centralities of the collision. The directed flow signal, $v_1(p_t)$, is found to increase with particle mass. This mass dependence is strongest in the projectile rapidity region.
The preliminary results of J/psi spectra at high transverse momentum (5<p_T<14 GeV/c) in p+p and Cu+Cu collisions at s_NN = 200 GeV are reported. The nuclear modification factor is measured to be 0.9+/-0.2 at p_T>5 GeV/c. The correlations between J/psi and charged hadrons are also studied in p+p collisions to understand the J/psi production mechanism at high p_T.
The production of $W^{pm}$ bosons in longitudinally polarized $vec{p}+vec{p}$ collisions at RHIC provides a new means of studying the spin-flavor asymmetries of the proton sea quark distributions. Details of the $W^{pm}$ event selection in the $e^{pm}$ decay channel at mid-rapidity are presented, along with preliminary results for the production cross section and parity-violating single-spin asymmetry, $A_L$, from the STAR Collaborations 2009 data at $sqrt{s}=500$ GeV.