Do you want to publish a course? Click here

Production of D-mesons in $p$+$p$ and $p$+Pb collisions at LHC energies

131   0   0.0 ( 0 )
 Added by Rama Chandra Baral
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

We present theoretical model comparison with published ALICE results for D-mesons (D$^0$, D$^+$ and D$^{*+}$) in $p$+$p$ collisions at $sqrt{s}$ = 7 TeV and $p$+Pb collisions at $sqrt{s_{NN}}$ = 5.02 TeV. Event generator HIJING, transport calculation of AMPT and calculations from NLO(MNR) and FONLL have been used for this study. We found that HIJING and AMPT model predictions are matching with published D-meson cross-sections in $p$+$p$ collisions, while both under-predict the same in $p$+Pb collisions. Attempts were made to explain the $R_{pPb}$ data using NLO-pQCD(MNR), FONLL and other above mentioned models.



rate research

Read More

We study the correlations of D mesons produced in $p$+$p$ and $p$+Pb collisions. These are found to be sensitive to the effects of the cold nuclear medium and the transverse momentum ($p_T$) regions we are looking into. In order to put this on a quantitative footing, as a first step we analyse the azimuthal correlations of D meson-charged hadron(Dh), and then predict the same for D meson -anti D meson ($Doverline{D}$) pairs in $p$+$p$ and $p$+Pb collisions with strong coupling at leading order $cal{O}$($alpha_{s}^{2}$) and next to leading order $cal{O}$($alpha_{s}^{3}$) which includes space-time evolution (in both systems), as well cold nuclear matter effects (in $p$+Pb). This also sets the stage and baseline for the identification and study of medium modification of azimuthal correlations in relativistic collision of heavy nuclei at the Large Hadron Collider.
We calculate various azimuthal angle distributions for three jets produced in the forward rapidity region with transverse momenta $p_T>20,mathrm{GeV}$ in proton-proton (p-p) and proton-lead (p-Pb) collisions at center of mass energy $5.02,,mathrm{TeV}$. We use the multi-parton extension of the so-called small-$x$ Improved Transverse Momentum Dependent factorization (ITMD). We study effects related to change from the standard $k_T$-factorization to ITMD factorization as well as changes as one goes from p-p collision to p-Pb. We observe rather large differences in the distribution when we change the factorization approach, which allows to both improve the small-$x$ TMD gluon distributions as well as validate and improve the factorization approach. We also see significant depletion of the nuclear modification ratio, indicating a possibility of searches for saturation effects using trijet final states in a more exclusive way than for dijets.
203 - I Kraus , J Cleymans , H Oeschler 2007
Predictions for particle production at LHC are discussed in the context of the statistical model. Moreover, the capability of particle ratios to determine the freeze-out point experimentally is studied, and the best suited ratios are specified. Finally, canonical suppression in p-p collisions at LHC energies is discussed in a cluster framework. Measurements with p-p collisions will allow us to estimate the strangeness correlation volume and to study its evolution over a large range of incident energies.
286 - J. Cleymans , S. Kabana , I. Kraus 2011
Recent results related to the chemical equilibration of hadrons in the final state of p-p and heavy ion collisions are reviewed.
The production mechanism of quarkonia states in hadronic collisions is still to be understood by the scientific community. In high-multiplicity $p+p$ collisions, Underlying Event (UE) observables are of major interest. The Multi-Parton Interactions (MPI) is a UE observable, where several interactions occur at the partonic level in a single $p+p$ event. This leads to dependence of particle production on event multiplicity. If the MPI occurs in a harder scale, there will be a correlation between the yield of quarkonia and total charged particle multiplicity. The ALICE experiment at the Large Hadron Collider (LHC) in $p+p$ collisions at $sqrt{s}$ = 7 and 13 TeV has observed an approximate linear increase of relative $J/psi$ yield ($frac{dN_{J/psi}/dy}{<dN_{J/psi}/dy>}$) with relative charged particle multiplicity density ($frac{dN_{ch}/dy}{<dN_{ch}/dy>}$). In our present work we have performed a comprehensive study of the production of charmonia as a function of charged particle multiplicity in $p+p$ collisions at LHC energies using pQCD-inspired multiparton interaction model, PYTHIA8 tune 4C, with and without Color Reconnection (CR) scheme. A detail multiplicity and energy dependent study is performed to understand the effects of MPI on $J/psi$ production. The ratio of $psi(2S)$ to $J/psi$ is also studied as a function of charged particle multiplicity at LHC energies.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا