Do you want to publish a course? Click here

Open Charm Production in $p + p$ and Pb + Pb collisions at the CERN Large Hadron Collider

298   0   0.0 ( 0 )
 Added by Vasile Topor Pop N
 Publication date 2013
  fields
and research's language is English
 Authors V. Topor Pop




Ask ChatGPT about the research

Effects of strong longitudinal colour electric fields (SCF), shadowing, and quenching on the open prompt charm mesons (D$^0$, D$^+$, D$^{*+}$, D${_s}{^+}$) production in central Pb + Pb collisions at $sqrt{s_{rm NN}}$ = 2.76 TeV are investigated within the framework of the {small HIJING/B=B v2.0} model. We compute the nuclear modification factor $R_{rm PbPb}^{rm D}$, and show that the above nuclear effects constitute important dynamical mechanisms in the description of experimental data. The strength of colour fields (as characterized by the string tension $kappa$), partonic energy loss and jet quenching process lead to a suppression factor consistent with recent published data. Predictions for future beauty mesons measurements have been included. Ratios of strange to non-strange prompt charm mesons in central Pb + Pb and minimum bias (MB) $ p + p$ collisions at 2.76 TeV are also discussed. Minimum bias $p + p$ collisions which constitute theoretical baseline in our calculations are studied at the centre of mass energies $sqrt{s}$ = 2.76 TeV and 7 TeV.



rate research

Read More

We study charm production in Pb+Pb collisions at $sqrt{s_{rm NN}}=$2.76 TeV in the Parton-Hadron-String-Dynamics transport approach and the charm dynamics in the partonic and hadronic medium. The charm quarks are produced through initial binary nucleon-nucleon collisions by using the PYTHIA event generator taking into account the (anti-)shadowing incorporated in the EPS09 package. The produced charm quarks interact with off-shell massive partons in the quark-gluon plasma and are hadronized into $D$ mesons through coalescence or fragmentation close to the critical energy density, and then interact with hadrons in the final hadronic stage with scattering cross sections calculated in an effective Lagrangian approach with heavy-quark spin symmetry. The PHSD results show a reasonable $R_{rm AA}$ and elliptic flow of $D$ mesons in comparison to the experimental data for Pb+Pb collisions at $sqrt{s_{NN}}$ = 2.76 TeV from the ALICE Collaboration. We also study the effect of temperature-dependent off-shell charm quarks in relativistic heavy-ion collisions. We find that the scattering cross sections are only moderately affected by off-shell charm degrees of freedom. However, the position of the peak of $R_{rm AA}$ for $D$ mesons depends on the strength of the scalar partonic forces which also have an impact on the $D$ meson elliptic flow. The comparison with experimental data on the $R_{rm AA}$ suggests that the repulsive force is weaker for off-shell charm quarks as compared to that for light quarks. Furthermore, the effects from radiative charm energy loss appear to be low compared to the collisional energy loss up to transverse momenta of $sim$ 15 GeV/c.
The kaon to pion ratio $K^+/pi^+$ and the scaled variance $omega^-$ for fluctuations of negatively charged particles are studied within the statistical hadron resonance gas (HRG) model and the Ultra relativistic Quantum Molecular Dynamics (UrQMD) transport model. The calculations are done for p+p, Be+Be, Ar+Sc, and Pb+Pb collisions at the CERN Super Proton Synchrotron energy range to reveal the system size dependence of hadron production. For the HRG calculations the canonical ensemble is imposed for all conserved charges. In the UrQMD simulations the centrality selection in nucleus-nucleus collisions is done by calculating the forward energy $E_{rm F}$ deposited in the Projectile Spectator Detector, and the acceptance maps of the NA61/SHINE detectors are used. A comparison of the HRG and UrQMD results with the data of the NA61/SHINE Collaboration is done. To understand a difference of the event-by-event fluctuations in p+p and heavy ion collisions the centrality selection procedure in the sample of all inelastic p+p events is proposed and analyzed within the UrQMD simulations.
114 - Sushanta Tripathy 2020
Recent results for high multiplicity pp and p-Pb collisions have revealed that they exhibit heavy-ion-like behaviors. To understand the origin(s) of these unexpected phenomena, event shape observables such as transverse spherocity ($S_{rm 0}^{p_{rm T} = 1}$) and the relative transverse activity classifier ($R_{rm{T}}$) can be exploited as a powerful tools to disentangle soft (non-perturbative) and hard (perturbative) particle production. Here, the production of light-flavor hadrons is shown for various $S_{rm 0}^{p_{rm T} = 1}$ classes in pp collisions at $sqrt{s}$ = 13 $textrm{TeV}$ measured with the ALICE detector at the LHC are presented. The evolution of average transverse momentum ($langle p_{rm T}rangle$) with charged-particle multiplicity, and identified particle ratios as a function of $p_{rm T}$ for different $S_{rm 0}^{p_{rm T} = 1}$ are also presented. In addition, the system size dependence of charged-particle production in pp, p-Pb, and Pb-Pb collisions at $sqrt{s_{rm NN}}$ = 5.02 TeV is presented. The evolution of $langle p_{rm T}rangle$ in different topological regions as a function of $R_{rm{T}}$ are presented. Finally, using the same approach, we present a search for jet quenching behavior in small collision systems.
We calculate various azimuthal angle distributions for three jets produced in the forward rapidity region with transverse momenta $p_T>20,mathrm{GeV}$ in proton-proton (p-p) and proton-lead (p-Pb) collisions at center of mass energy $5.02,,mathrm{TeV}$. We use the multi-parton extension of the so-called small-$x$ Improved Transverse Momentum Dependent factorization (ITMD). We study effects related to change from the standard $k_T$-factorization to ITMD factorization as well as changes as one goes from p-p collision to p-Pb. We observe rather large differences in the distribution when we change the factorization approach, which allows to both improve the small-$x$ TMD gluon distributions as well as validate and improve the factorization approach. We also see significant depletion of the nuclear modification ratio, indicating a possibility of searches for saturation effects using trijet final states in a more exclusive way than for dijets.
A method for quantum corrections of Hanbury-Brown/Twiss (HBT) interferometric radii produced by semi-classical event generators is proposed. These corrections account for the basic indistinguishability and mutual coherence of closely located emitters caused by the uncertainty principle. A detailed analysis is presented for pion interferometry in $p+p$ collisions at LHC energy ($sqrt{s}=7$ TeV). A prediction is also presented of pion interferometric radii for $p+$Pb collisions at $sqrt{s}=5.02$ TeV. The hydrodynamic/hydrokinetic model with UrQMD cascade as afterburner is utilized for this aim. It is found that quantum corrections to the interferometry radii improve significantly the event generator results which typically overestimate the experimental radii of small systems. A successful description of the interferometry structure of $p+p$ collisions within the corrected hydrodynamic model requires the study of the problem of thermalization mechanism, still a fundamental issue for ultrarelativistic $A+A$ collisions, also for high multiplicity $p+p$ and $p+$Pb events.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا