في هذا العمل، نقوم بتصميم نموذج نهاية إلى نهاية لتوليد الشعر على أساس نماذج لغة الشبكة العصبية المتكررة مشروطة (RNN) تهدف إلى تعلم الميزات الأسلوبية (طول القصيدة والشعور والتقاليد والتقييم) من الأمثلة وحدها.نعرض أن هذا النموذج يتعلم بنجاح معنى "الطول والشعور، حيث يمكننا التحكم في ذلك لتوليد أطول أو أقصر بالإضافة إلى قصائد أكثر إيجابية أو أكثر سلبية.ومع ذلك، فإن النموذج لا يفهم الظواهر الصوتية مثل الجناس والقفا، ولكن بدلا من ذلك يغمر الإشارات الإحصائية ذات المستوى المنخفض.الأسباب المحتملة تشمل حجم بيانات التدريب، وتردد منخفض نسبيا وصعوبة هذه الظواهر الصربية وكذلك التحيزات النموذجية.نظهر أن نماذج GPT-2 الأخيرة لديها أيضا مشاكل في تعلم ظواهر soblexical مثل القافية من الأمثلة وحدها.
In this work, we design an end-to-end model for poetry generation based on conditioned recurrent neural network (RNN) language models whose goal is to learn stylistic features (poem length, sentiment, alliteration, and rhyming) from examples alone. We show this model successfully learns the meaning' of length and sentiment, as we can control it to generate longer or shorter as well as more positive or more negative poems. However, the model does not grasp sound phenomena like alliteration and rhyming, but instead exploits low-level statistical cues. Possible reasons include the size of the training data, the relatively low frequency and difficulty of these sublexical phenomena as well as model biases. We show that more recent GPT-2 models also have problems learning sublexical phenomena such as rhyming from examples alone.
References used
https://aclanthology.org/
Extracting relation triplets from raw text is a crucial task in Information Extraction, enabling multiple applications such as populating or validating knowledge bases, factchecking, and other downstream tasks. However, it usually involves multiple-s
For each goal-oriented dialog task of interest, large amounts of data need to be collected for end-to-end learning of a neural dialog system. Collecting that data is a costly and time-consuming process. Instead, we show that we can use only a small a
Evaluation for many natural language understanding (NLU) tasks is broken: Unreliable and biased systems score so highly on standard benchmarks that there is little room for researchers who develop better systems to demonstrate their improvements. The
A real-world information extraction (IE) system for semi-structured document images often involves a long pipeline of multiple modules, whose complexity dramatically increases its development and maintenance cost. One can instead consider an end-to-e
In the last few years, several methods have been proposed to build meta-embeddings. The general aim was to obtain new representations integrating complementary knowledge from different source pre-trained embeddings thereby improving their overall qua