في الآونة الأخيرة، بدأ عدد من مقدمي الترجمة الآلات التجارية (MT) تقديم ميزات مسرد يسمح للمستخدمين بتنفيذ المصطلحات في إخراج نموذج عام. ومع ذلك، على حد علمنا، ليس من الواضح كيف ستؤثر هذه الميزات على دقة المصطلحات والنوعية الشاملة للإخراج. تهدف المساهمة الحالية إلى توفير نظرة أولية في أداء النماذج العامة المحسنة المسرد التي تقدمها أربعة مقدمي خدمات. تنطوي اختباراتنا على اثنين من المجالات المختلفة وأزواج اللغات، I.E.STSSWEAR EN - FR ومعدات صناعية DE - EN. سيتم تقييم إخراج كل طراز عام وعلى Glossaryenenhanced One الاعتماد على معدل خطأ الترجمة (TER) لمراعاة جودة الإخراج الإجمالية وعلى الدقة لتقييم الامتثال لمصطلان المسرد. يتبع ذلك تقييم يدوي. تركز المساهمة الحالية أساسا على فهم كيفية استغلال ميزات المسرد هذه بشكل مثمر من قبل مقدمي خدمات اللغة (LSPs)، وخاصة في سيناريو يتوفر فيه مشرق العميل بالفعل ويضاف إلى النموذج العام كما هو.
Recently, a number of commercial Machine Translation (MT) providers have started to offer glossary features allowing users to enforce terminology into the output of a generic model. However, to the best of our knowledge it is not clear how such features would impact terminology accuracy and the overall quality of the output. The present contribution aims at providing a first insight into the performance of the glossary-enhanced generic models offered by four providers. Our tests involve two different domains and language pairs, i.e. Sportswear En--Fr and Industrial Equipment De--En. The output of each generic model and of the glossaryenhanced one will be evaluated relying on Translation Error Rate (TER) to take into account the overall output quality and on accuracy to assess the compliance with the glossary. This is followed by a manual evaluation. The present contribution mainly focuses on understanding how these glossary features can be fruitfully exploited by language service providers (LSPs), especially in a scenario in which a customer glossary is already available and is added to the generic model as is.
References used
https://aclanthology.org/
In this paper we introduce a vision towards establishing the Malta National Language Technology Platform; an ongoing effort that aims to provide a basis for enhancing Malta's official languages, namely Maltese and English, using Machine Translation.
In this work, two Neural Machine Translation (NMT) systems have been developed and evaluated as part of the bidirectional Tamil-Telugu similar languages translation subtask in WMT21. The OpenNMT-py toolkit has been used to create quick prototypes of
Machine translation performs automatic translation from one natural language to another. Neural machine translation attains a state-of-the-art approach in machine translation, but it requires adequate training data, which is a severe problem for low-
How difficult is it for English-as-a-second language (ESL) learners to read noisy English texts? Do ESL learners need lexical normalization to read noisy English texts? These questions may also affect community formation on social networking sites wh
In this paper and we explore different techniques of overcoming the challenges of low-resource in Neural Machine Translation (NMT) and specifically focusing on the case of English-Marathi NMT. NMT systems require a large amount of parallel corpora to