Do you want to publish a course? Click here

Analyzing Curriculum Learning for Sentiment Analysis along Task Difficulty, Pacing and Visualization Axes

تحليل تعلم المناهج الدراسية لتحليل المعنويات على طول صعوبة المهمة، ومحاويات التصور

323   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

While Curriculum Learning (CL) has recently gained traction in Natural language Processing Tasks, it is still not adequately analyzed. Previous works only show their effectiveness but fail short to explain and interpret the internal workings fully. In this paper, we analyze curriculum learning in sentiment analysis along multiple axes. Some of these axes have been proposed by earlier works that need more in-depth study. Such analysis requires understanding where curriculum learning works and where it does not. Our axes of analysis include Task difficulty on CL, comparing CL pacing techniques, and qualitative analysis by visualizing the movement of attention scores in the model as curriculum phases progress. We find that curriculum learning works best for difficult tasks and may even lead to a decrement in performance for tasks with higher performance without curriculum learning. We see that One-Pass curriculum strategies suffer from catastrophic forgetting and attention movement visualization within curriculum pacing. This shows that curriculum learning breaks down the challenging main task into easier sub-tasks solved sequentially.



References used
https://aclanthology.org/
rate research

Read More

This paper investigates and reveals the relationship between two closely related machine learning disciplines, namely Active Learning (AL) and Curriculum Learning (CL), from the lens of several novel curricula. This paper also introduces Active Curri culum Learning (ACL) which improves AL by combining AL with CL to benefit from the dynamic nature of the AL informativeness concept as well as the human insights used in the design of the curriculum heuristics. Comparison of the performance of ACL and AL on two public datasets for the Named Entity Recognition (NER) task shows the effectiveness of combining AL and CL using our proposed framework.
Machine Translation (MT) systems often fail to preserve different stylistic and pragmatic properties of the source text (e.g. sentiment and emotion and gender traits and etc.) to the target and especially in a low-resource scenario. Such loss can aff ect the performance of any downstream Natural Language Processing (NLP) task and such as sentiment analysis and that heavily relies on the output of the MT systems. The susceptibility to sentiment polarity loss becomes even more severe when an MT system is employed for translating a source content that lacks a legitimate language structure (e.g. review text). Therefore and we must find ways to minimize the undesirable effects of sentiment loss in translation without compromising with the adequacy. In our current work and we present a deep re-inforcement learning (RL) framework in conjunction with the curriculum learning (as per difficulties of the reward) to fine-tune the parameters of a pre-trained neural MT system so that the generated translation successfully encodes the underlying sentiment of the source without compromising the adequacy unlike previous methods. We evaluate our proposed method on the English--Hindi (product domain) and French--English (restaurant domain) review datasets and and found that our method brings a significant improvement over several baselines in the machine translation and and sentiment classification tasks.
This paper presents the ROCLING 2021 shared task on dimensional sentiment analysis for educational texts which seeks to identify a real-value sentiment score of self-evaluation comments written by Chinese students in the both valence and arousal dime nsions. Valence represents the degree of pleasant and unpleasant (or positive and negative) feelings, and arousal represents the degree of excitement and calm. Of the 7 teams registered for this shared task for two-dimensional sentiment analysis, 6 submitted results. We expected that this evaluation campaign could produce more advanced dimensional sentiment analysis techniques for the educational domain. All data sets with gold standards and scoring script are made publicly available to researchers.
Aspect Category Sentiment Analysis (ACSA), which aims to identify fine-grained sentiment polarities of the aspect categories discussed in user reviews. ACSA is challenging and costly when conducting it into real-world applications, that mainly due to the following reasons: 1.) Labeling the fine-grained ACSA data is often labor-intensive. 2.) The aspect categories will be dynamically updated and adjusted with the development of application scenarios, which means that the data must be relabeled frequently. 3.) Due to the increase of aspect categories, the model must be retrained frequently to fast adapt to the newly added aspect category data. To overcome the above-mentioned problems, we introduce a novel Meta Multi-Task Learning (MMTL) approach, that frame ACSA tasks as a meta-learning problem (i.e., regarding aspect-category sentiment polarity classification problems as the different training tasks for meta-learning) to learn an ideal and shareable initialization for the multi-task learning model that can be adapted to new ACSA tasks efficiently and effectively. Experiment results show that the proposed approach significantly outperforms the strong pre-trained transformer-based baseline model, especially, in the case of less labeled fine-grained training data.
We use the MacBERT transformers and fine-tune them to ROCLING-2021 shared tasks using the CVAT and CVAS data. We compare the performance of MacBERT with the other two transformers BERT and RoBERTa in the valence and arousal dimensions, respectively. MAE and correlation coefficient (r) were used as evaluation metrics. On ROCLING-2021 test set, our used MacBERT model achieves 0.611 of MAE and 0.904 of r in the valence dimensions; and 0.938 of MAE and 0.549 of r in the arousal dimension.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا