غالبا ما تفشل أنظمة الترجمة الآلية في الحفاظ على خصائص أسلوبية وبراغمية مختلفة لنص المصدر (E.G. المشاعر والمشاعر والسمات الجنسانية وغيرها) إلى الهدف وخاصة في سيناريو منخفض الموارد. يمكن أن تؤثر هذه الخسارة على أداء أي مهمة معالجة اللغة الطبيعية المصب (NLP) ومثل تحليل المعرفات وهذا يعتمد بشدة على إخراج أنظمة MT. أصبحت القابلية للإصابة بفقدان القطبية أكثر شدة عندما يعمل نظام MT لترجمة محتوى مصدر يفتقر إلى بنية لغة شرعية (على سبيل المثال نص المراجعة). لذلك، يجب أن نجد طرقا لتقليل الآثار غير المرغوب فيها لتفقد المعنويات في الترجمة دون المساومة مع الكفاية. في عملنا الحالي، نقدم إطارا عميقا لتعليم التعلم (RL) مع التعلم من المناهج الدراسية (وفقا لصعوبات المكافأة) لضبط معايير نظام MT العصبي المدرب مسبقا بحيث الترجمة التي تم إنشاؤها يقوم بنجاح بترميز المعنويات الأساسية للمصدر دون المساس بالكفاية على عكس الأساليب السابقة. نقوم بتقييم أسلوبنا المقترح على مجموعات البيانات المراجعة باللغة الإنجليزية - الهندية والفرنسية - الإنجليزية (مجال مطعم) ووجدت أن طريقتنا تجلب تحسنا كبيرا على العديد من خطوط الأساس في مهام الترجمة الآلية وتصنيف المعنويات.
Machine Translation (MT) systems often fail to preserve different stylistic and pragmatic properties of the source text (e.g. sentiment and emotion and gender traits and etc.) to the target and especially in a low-resource scenario. Such loss can affect the performance of any downstream Natural Language Processing (NLP) task and such as sentiment analysis and that heavily relies on the output of the MT systems. The susceptibility to sentiment polarity loss becomes even more severe when an MT system is employed for translating a source content that lacks a legitimate language structure (e.g. review text). Therefore and we must find ways to minimize the undesirable effects of sentiment loss in translation without compromising with the adequacy. In our current work and we present a deep re-inforcement learning (RL) framework in conjunction with the curriculum learning (as per difficulties of the reward) to fine-tune the parameters of a pre-trained neural MT system so that the generated translation successfully encodes the underlying sentiment of the source without compromising the adequacy unlike previous methods. We evaluate our proposed method on the English--Hindi (product domain) and French--English (restaurant domain) review datasets and and found that our method brings a significant improvement over several baselines in the machine translation and and sentiment classification tasks.
References used
https://aclanthology.org/
While Curriculum Learning (CL) has recently gained traction in Natural language Processing Tasks, it is still not adequately analyzed. Previous works only show their effectiveness but fail short to explain and interpret the internal workings fully. I
This paper investigates and reveals the relationship between two closely related machine learning disciplines, namely Active Learning (AL) and Curriculum Learning (CL), from the lens of several novel curricula. This paper also introduces Active Curri
Currently, multilingual machine translation is receiving more and more attention since it brings better performance for low resource languages (LRLs) and saves more space. However, existing multilingual machine translation models face a severe challe
In this study, we proposed a novel Lexicon-based pseudo-labeling method utilizing explainable AI(XAI) approach. Existing approach have a fundamental limitation in their robustness because poor classifier leads to inaccurate soft-labeling, and it lead
Medical simulators provide a controlled environment for training and assessing clinical skills. However, as an assessment platform, it requires the presence of an experienced examiner to provide performance feedback, commonly preformed using a task s