Do you want to publish a course? Click here

Sentiment Preservation in Review Translation using Curriculum-based Re-inforcement Framework

تحفظ المعنويات في ترجمة المراجعة باستخدام إطار إعادة المعلومات القائمة على المناهج الدراسية

350   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Machine Translation (MT) systems often fail to preserve different stylistic and pragmatic properties of the source text (e.g. sentiment and emotion and gender traits and etc.) to the target and especially in a low-resource scenario. Such loss can affect the performance of any downstream Natural Language Processing (NLP) task and such as sentiment analysis and that heavily relies on the output of the MT systems. The susceptibility to sentiment polarity loss becomes even more severe when an MT system is employed for translating a source content that lacks a legitimate language structure (e.g. review text). Therefore and we must find ways to minimize the undesirable effects of sentiment loss in translation without compromising with the adequacy. In our current work and we present a deep re-inforcement learning (RL) framework in conjunction with the curriculum learning (as per difficulties of the reward) to fine-tune the parameters of a pre-trained neural MT system so that the generated translation successfully encodes the underlying sentiment of the source without compromising the adequacy unlike previous methods. We evaluate our proposed method on the English--Hindi (product domain) and French--English (restaurant domain) review datasets and and found that our method brings a significant improvement over several baselines in the machine translation and and sentiment classification tasks.



References used
https://aclanthology.org/
rate research

Read More

While Curriculum Learning (CL) has recently gained traction in Natural language Processing Tasks, it is still not adequately analyzed. Previous works only show their effectiveness but fail short to explain and interpret the internal workings fully. I n this paper, we analyze curriculum learning in sentiment analysis along multiple axes. Some of these axes have been proposed by earlier works that need more in-depth study. Such analysis requires understanding where curriculum learning works and where it does not. Our axes of analysis include Task difficulty on CL, comparing CL pacing techniques, and qualitative analysis by visualizing the movement of attention scores in the model as curriculum phases progress. We find that curriculum learning works best for difficult tasks and may even lead to a decrement in performance for tasks with higher performance without curriculum learning. We see that One-Pass curriculum strategies suffer from catastrophic forgetting and attention movement visualization within curriculum pacing. This shows that curriculum learning breaks down the challenging main task into easier sub-tasks solved sequentially.
This paper investigates and reveals the relationship between two closely related machine learning disciplines, namely Active Learning (AL) and Curriculum Learning (CL), from the lens of several novel curricula. This paper also introduces Active Curri culum Learning (ACL) which improves AL by combining AL with CL to benefit from the dynamic nature of the AL informativeness concept as well as the human insights used in the design of the curriculum heuristics. Comparison of the performance of ACL and AL on two public datasets for the Named Entity Recognition (NER) task shows the effectiveness of combining AL and CL using our proposed framework.
Currently, multilingual machine translation is receiving more and more attention since it brings better performance for low resource languages (LRLs) and saves more space. However, existing multilingual machine translation models face a severe challe nge: imbalance. As a result, the translation performance of different languages in multilingual translation models are quite different. We argue that this imbalance problem stems from the different learning competencies of different languages. Therefore, we focus on balancing the learning competencies of different languages and propose Competence-based Curriculum Learning for Multilingual Machine Translation, named CCL-M. Specifically, we firstly define two competencies to help schedule the high resource languages (HRLs) and the low resource languages: 1) Self-evaluated Competence, evaluating how well the language itself has been learned; and 2) HRLs-evaluated Competence, evaluating whether an LRL is ready to be learned according to HRLs' Self-evaluated Competence. Based on the above competencies, we utilize the proposed CCL-M algorithm to gradually add new languages into the training set in a curriculum learning manner. Furthermore, we propose a novel competence-aware dynamic balancing sampling strategy for better selecting training samples in multilingual training. Experimental results show that our approach has achieved a steady and significant performance gain compared to the previous state-of-the-art approach on the TED talks dataset.
In this study, we proposed a novel Lexicon-based pseudo-labeling method utilizing explainable AI(XAI) approach. Existing approach have a fundamental limitation in their robustness because poor classifier leads to inaccurate soft-labeling, and it lead to poor classifier repetitively. Meanwhile, we generate the lexicon consists of sentiment word based on the explainability score. Then we calculate the confidence of unlabeled data with lexicon and add them into labeled dataset for the robust pseudo-labeling approach. Our proposed method has three contributions. First, the proposed methodology automatically generates a lexicon based on XAI and performs independent pseudo-labeling, thereby guaranteeing higher performance and robustness compared to the existing one. Second, since lexicon-based pseudo-labeling is performed without re-learning in most of models, time efficiency is considerably increased, and third, the generated high-quality lexicon can be available for sentiment analysis of data from similar domains. The effectiveness and efficiency of our proposed method were verified through quantitative comparison with the existing pseudo-labeling method and qualitative review of the generated lexicon.
Medical simulators provide a controlled environment for training and assessing clinical skills. However, as an assessment platform, it requires the presence of an experienced examiner to provide performance feedback, commonly preformed using a task s pecific checklist. This makes the assessment process inefficient and expensive. Furthermore, this evaluation method does not provide medical practitioners the opportunity for independent training. Ideally, the process of filling the checklist should be done by a fully-aware objective system, capable of recognizing and monitoring the clinical performance. To this end, we have developed an autonomous and a fully automatic speech-based checklist system, capable of objectively identifying and validating anesthesia residents' actions in a simulation environment. Based on the analyzed results, our system is capable of recognizing most of the tasks in the checklist: F1 score of 0.77 for all of the tasks, and F1 score of 0.79 for the verbal tasks. Developing an audio-based system will improve the experience of a wide range of simulation platforms. Furthermore, in the future, this approach may be implemented in the operation room and emergency room. This could facilitate the development of automatic assistive technologies for these domains.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا