Do you want to publish a course? Click here

Elemental abundances in the atmosphere of clump giants

104   0   0.0 ( 0 )
 Added by Sergey Korotin
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

The aim of this paper is to provide the fundamental parameters and abundances for a large sample of local clump giants with a high accuracy. The selection of clump stars for the sample group was made applying a color - absolute magnitude window to nearby Hipparcos stars. The abundances of carbon and nitrogen were obtained from molecular synthetic spectrum, the Mg and Na abundances were derived using the non-LTE approximation. The classical models of stellar evolution without atomic diffusion and rotation-induced mixing were employed. The atmospheric parameters (Teff, log g, [Fe/H], Vt) and Li, C, N, O, Na, Mg, Si, Ca and Ni abundances in 177 clump giants of the Galactic disc were determined. The underabundance of carbon, overabundance of nitrogen and normal abundance of oxygen were detected. A small sodium overabundance was found. A possibility of a selection of the clump giants based on their chemical composition and the evolutionary tracks was explored. The theoretical predictions based on the classical stellar evolution models are in good agreement with the observed surface variations of the carbon and nitrogen just after the first dredge-up episode. The giants show the same behavior of the dependencies of O, Mg, Ca, Si (alpha-elements) and Ni (iron-peak element) abundances vs. [Fe/H] as dwarfs do. This allows one to use such abundance ratios to study the chemical and dynamical evolution of the Galaxy.



rate research

Read More

168 - Yoichi Takeda , Bunei Sato , 2008
The properties of 322 intermediate-mass late-G giants (comprising 10 planet-host stars) selected as the targets of Okayama Planet Search Program, many of which are red-clump giants, were comprehensively investigated by establishing their various stellar parameters (atmospheric parameters including turbulent velocity fields, metallicity, luminosity, mass, age, projected rotational velocity, etc.), and their photospheric chemical abundances for 17 elements, in order to study their mutual dependence, connection with the existence of planets, and possible evolution-related characteristics. The metallicity distribution of planet-host giants was found to be almost the same as that of non-planet-host giants, making marked contrast to the case of planet-host dwarfs tending to be metal-rich. Generally, the metallicities of these comparatively young (typical age of ~10^9 yr) giants tend to be somewhat lower than those of dwarfs at the same age, and super-metal-rich ([Fe/H] > 0.2) giants appear to be lacking. Apparent correlations were found between the abundances of C, O, and Na, suggesting that the surface compositions of these elements have undergone appreciable changes due to dredge-up of H-burning products by evolution-induced deep envelope mixing which becomes more efficient for higher-mass stars.
Hot atmospheres of massive galaxies are enriched with metals. Elemental abundances measured in the X-ray band have been used to study the chemical enrichment of supernova remnants, elliptical galaxies, groups and clusters of galaxies. Here we measure the elemental abundances of the hot atmosphere of luminous infrared galaxy Arp 299 observed with XMM-Newton. To measure the abundances in the hot atmosphere, we use a multi-temperature thermal plasma model, which provides a better fit to the Reflection Grating Spectrometer data. The observed Fe/O abundance ratio is subsolar, while those of Ne/O and Mg/O are slightly above solar. Core-collapse supernovae (SNcc) are the dominant metal factory of elements like O, Ne, and Mg. We find some deviations between the observed abundance patterns and theoretical ones from a simple chemical enrichment model. One possible explanation is that massive stars with $M_{star}gtrsim23-27~M_{odot}$ might not explode as SNcc and enrich the hot atmosphere. This is in accordance with the missing massive SNcc progenitors problem, where very massive progenitors $M_{star}gtrsim18~M_{odot}$ of SNcc have not been clearly detected. It is also possible that theoretical SNcc nucleosynthesis yields of Mg/O yields are underestimated.
105 - K. Werner , T. Rauch , E. Reiff 2007
The hydrogen-deficiency in extremely hot post-AGB stars of spectral class PG1159 is probably caused by a (very) late helium-shell flash or a AGB final thermal pulse that consumes the hydrogen envelope, exposing the usually-hidden intershell region. Thus, the photospheric elemental abundances of these stars allow to draw conclusions about details of nuclear burning and mixing processes in the precursor AGB stars. We compare predicted elemental abundances to those determined by quantitative spectral analyses performed with advanced non-LTE model atmospheres. A good qualitative and quantitative agreement is found for many species (He, C, N, O, Ne, F, Si, Ar) but discrepancies for others (P, S, Fe) point at shortcomings in stellar evolution models for AGB stars. PG1159 stars appear to be the direct progeny of [WC] stars.
We present RGS data from an XMM-Newton observation of the Seyfert 1 galaxy NGC 3516, taken while the continuum source was in an extreme low state. The spectrum shows numerous emission lines including the H-like lines of C, N and O and the He-like lines of N, O and Ne. These data show that the N lines are far stronger than would be expected from gas of solar abundances. Based on our photoionization models, we find that N is overabundant compared to C, O and Ne by at least a factor of 2.5. We suggest this is the result of secondary production of N in intermediate mass stars, and indicative of the history of star formation in NGC 3516.
In this work we have used 3D hydrodynamical (CO5BOLD) and 1D hydrostatic (LHD) stellar atmosphere models to study the importance of convection and horizontal temperature inhomogeneities in stellar abundance work related to late-type giants. We have found that for a number of key elements, such as Na, Mg, Si, Ca, Ti, Fe, Ni, Zn, Ba, Eu, differences in abundances predicted by 3D and 1D models are typically minor (< 0.1 dex) at solar metallicity. However, at [M/H] = -3 they become larger and reach to -0.5...-0.8 dex. In case of neutral atoms and fixed metallicity, the largest abundance differences were obtained for the spectral lines with lowest excitation potential, while for ionized species the largest 3D-1D abundance differences were found for lines of highest excitation potential. The large abundance differences at low metallicity are caused by large horizontal temperature fluctuations and lower mean temperature in the outer layers of the 3D hydrodynamical model compared with its 1D counterpart.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا