Do you want to publish a course? Click here

Elemental Abundances of the Hot Atmosphere of Luminous Infrared Galaxy Arp 299

103   0   0.0 ( 0 )
 Added by Junjie Mao
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Hot atmospheres of massive galaxies are enriched with metals. Elemental abundances measured in the X-ray band have been used to study the chemical enrichment of supernova remnants, elliptical galaxies, groups and clusters of galaxies. Here we measure the elemental abundances of the hot atmosphere of luminous infrared galaxy Arp 299 observed with XMM-Newton. To measure the abundances in the hot atmosphere, we use a multi-temperature thermal plasma model, which provides a better fit to the Reflection Grating Spectrometer data. The observed Fe/O abundance ratio is subsolar, while those of Ne/O and Mg/O are slightly above solar. Core-collapse supernovae (SNcc) are the dominant metal factory of elements like O, Ne, and Mg. We find some deviations between the observed abundance patterns and theoretical ones from a simple chemical enrichment model. One possible explanation is that massive stars with $M_{star}gtrsim23-27~M_{odot}$ might not explode as SNcc and enrich the hot atmosphere. This is in accordance with the missing massive SNcc progenitors problem, where very massive progenitors $M_{star}gtrsim18~M_{odot}$ of SNcc have not been clearly detected. It is also possible that theoretical SNcc nucleosynthesis yields of Mg/O yields are underestimated.



rate research

Read More

We have used high resolution (~2.3) observations of the local (D = 46 Mpc) luminous infrared galaxy Arp 299 to map out the physical properties of the molecular gas which provides the fuel for its extreme star formation activity. The 12CO J=3-2, 12CO J=2-1 and 13CO J=2-1 lines were observed with the Submillimeter Array and the short spacings of the 12CO J=2-1 and J=3-2 observations have been recovered using James Clerk Maxwell Telescope single dish observations. We use the radiative transfer code RADEX to estimate the physical properties (density, column density and temperature) of the different regions in this system. The RADEX solutions of the two galaxy nuclei, IC 694 and NGC 3690, are consistent with a wide range of gas components, from warm moderately dense gas with T_{kin} > 30 K and n(H_{2}) ~ 0.3 - 3 x 10^{3} cm^{-3} to cold dense gas with T_{kin} ~ 10-30 K and n(H_{2}) > 3 x 10^{3} cm^{-3}. The overlap region is shown to have a better constrained solution with T_{rm{kin}}$ ~ 10-50 K and n(H_{2}) ~ 1-30 x 10^{3} cm^{-3}. We estimate the gas masses and star formation rates of each region in order to derive molecular gas depletion times. The depletion times of all regions (20-60 Myr) are found to be about 2 orders of magnitude lower than those of normal spiral galaxies. This rapid depletion time can probably be explained by a high fraction of dense gas on kiloparsec scales in Arp 299. We estimate the CO-to-H_{2} factor, alpha_{co} to be 0.4 pm 0.3 (3 x 10^{-4}/ x_{CO}) M_{sol} (K km s^{-1} pc^{2})^{-1} for the overlap region. This value agrees well with values determined previously for more advanced merger systems.
Star-forming galaxies are huge reservoirs of cosmic rays (CRs) and these CRs convert a significant fraction of their energy into $gamma$-rays by colliding with the interstellar medium (ISM). Several nearby star-forming galaxies have been detected in GeV-TeV $gamma$-rays. It is also found that the $gamma$-ray luminosities in 0.1-100 GeV correlate well with indicators of star formation rates of the galaxies, such as the total infrared (IR) luminosity. In this paper, we report a systematic search for possible $gamma$-ray emission from galaxies in the IRAS Revised Bright Galaxies Sample, using 11.4 years of $gamma$-ray data taken by the Fermi Large Area Telescope (LAT). Two new galaxies, M33 and Arp 299, are detected significantly. The two galaxies are consistent with the empirical correlation between the $gamma$-ray luminosity and total infrared luminosity, suggesting that their $gamma$-ray emissions should mainly originate from CRs interacting with ISM. Nevertheless, there is a tentative evidence that the flux of the $gamma$-ray emission from Arp~299 is variable. If the variability is true, part of the emission from Arp 299 should originate from the obscured AGN in this interacting galaxy system. In addition, we find that the $gamma$-ray excess from M33 is located at the northeast region of the galaxy, where a supergiant H II region, NGC604, resides. This indicates that some bright star-forming regions in spiral galaxies could play a dominant role in the galaxy in producing $gamma$-ray emission.
We report results of a Chandra observation of the X-ray luminous star-forming galaxy Arp299 (NGC3690/IC694). We detect 18 discrete X-ray sources with luminosities above ~10^39 ergs (0.5-8.0 keV band), which contribute ~40% of the total galactic emission in this band. The remaining emission is associated with a diffuse component spatially coincident with regions of widespread star-formation. We detect X-ray emission from both nuclei. One of the discrete sources within the complex nuclear region of NGC 3690 is found to have a very hard spectrum and therefore we associate it with the origin of the AGN-like spectrum that has also been detected at high X-ray energies using Beppo-SAX.
The known host galaxies of short-hard gamma-ray bursts (GRBs) to date are characterized by low to moderate star-formation rates and a broad range of stellar masses. In this paper, we positionally associate the recent unambiguously short-hard Swift GRB 100206A with a disk galaxy at redshift z=0.4068 that is rapidly forming stars at a rate of ~30 M_sun/yr, almost an order of magnitude higher than any previously identified short GRB host. Using photometry from Gemini, Keck, PAIRITEL, and WISE, we show that the galaxy is very red (g-K = 4.3 AB mag), heavily obscured (A_V ~ 2 mag), and has the highest metallicity of any GRB host to date (12 + log[O/H]_KD02 = 9.2): it is a classical luminous infrared galaxy (LIRG), with L_IR ~ 4 x 10^11 L_sun. While these properties could be interpreted to support an association of this GRB with very recent star formation, modeling of the broadband spectral energy distribution also indicates that a substantial stellar mass of mostly older stars is present. The current specific star-formation rate is modest (specific SFR ~ 0.5 Gyr^-1), the current star-formation rate is not substantially elevated above its long-term average, and the host morphology shows no sign of recent merger activity. Our observations are therefore equally consistent with an older progenitor, similar to what is inferred for other short-hard GRBs. Given the precedent established by previous short GRB hosts and the significant fraction of the Universes stellar mass in LIRG-like systems at z >~0.3, an older progenitor represents the most likely origin of this event.
103 - T.V. Mishenina 2006
The aim of this paper is to provide the fundamental parameters and abundances for a large sample of local clump giants with a high accuracy. The selection of clump stars for the sample group was made applying a color - absolute magnitude window to nearby Hipparcos stars. The abundances of carbon and nitrogen were obtained from molecular synthetic spectrum, the Mg and Na abundances were derived using the non-LTE approximation. The classical models of stellar evolution without atomic diffusion and rotation-induced mixing were employed. The atmospheric parameters (Teff, log g, [Fe/H], Vt) and Li, C, N, O, Na, Mg, Si, Ca and Ni abundances in 177 clump giants of the Galactic disc were determined. The underabundance of carbon, overabundance of nitrogen and normal abundance of oxygen were detected. A small sodium overabundance was found. A possibility of a selection of the clump giants based on their chemical composition and the evolutionary tracks was explored. The theoretical predictions based on the classical stellar evolution models are in good agreement with the observed surface variations of the carbon and nitrogen just after the first dredge-up episode. The giants show the same behavior of the dependencies of O, Mg, Ca, Si (alpha-elements) and Ni (iron-peak element) abundances vs. [Fe/H] as dwarfs do. This allows one to use such abundance ratios to study the chemical and dynamical evolution of the Galaxy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا