Do you want to publish a course? Click here

Chemical abundances in metal-poor giants: limitations imposed by the use of classical 1D stellar atmosphere models

139   0   0.0 ( 0 )
 Added by Vidas Dobrovolskas
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this work we have used 3D hydrodynamical (CO5BOLD) and 1D hydrostatic (LHD) stellar atmosphere models to study the importance of convection and horizontal temperature inhomogeneities in stellar abundance work related to late-type giants. We have found that for a number of key elements, such as Na, Mg, Si, Ca, Ti, Fe, Ni, Zn, Ba, Eu, differences in abundances predicted by 3D and 1D models are typically minor (< 0.1 dex) at solar metallicity. However, at [M/H] = -3 they become larger and reach to -0.5...-0.8 dex. In case of neutral atoms and fixed metallicity, the largest abundance differences were obtained for the spectral lines with lowest excitation potential, while for ionized species the largest 3D-1D abundance differences were found for lines of highest excitation potential. The large abundance differences at low metallicity are caused by large horizontal temperature fluctuations and lower mean temperature in the outer layers of the 3D hydrodynamical model compared with its 1D counterpart.

rate research

Read More

Reconstructing the chemical evolution of the Milky Way is crucial for understanding the formation of stars, planets, and galaxies throughout cosmic time. Different studies associated with element production in the early universe and how elements are incorporated into gas and stars are necessary to piece together how the elements evolved. These include establishing chemical abundance trends, as set by metal-poor stars, comparing nucleosynthesis yield predictions with stellar abundance data, and theoretical modeling of chemical evolution. To aid these studies, we have collected chemical abundance measurements and other information such as stellar parameters, coordinates, magnitudes, and radial velocities, for extremely metal-poor stars from the literature. The database, JINAbase, contains 1658 unique stars, 60% of which have [Fe/H]<2.5. This information is stored in an SQL database, together with a user-friendly queryable web application (http://jinabase.pythonanywhere.com). Objects with unique chemical element signatures (e.g., r-process stars, s-process and CEMP stars) are labeled or can be classified as such. The web application enables fast selection of customized comparison samples from the literature for the aforementioned studies and many more. Using the multiple entries for three of the most well studied metal-poor stars, we evaluate systematic uncertainties of chemical abundances measurements. We provide a brief guide on the selection of chemical elements for model comparisons for non- spectroscopists who wish to learn about metal-poor stars and the details of chemical abundances measurements.
A non-LTE analysis of K I resonance lines at 7664.91 and 7698.97 A was carried out for 15 red giants belonging to three globular clusters of different metallicity (M 4, M 13, and M 15) along with two reference early-K giants (rho Boo and alpha Boo), in order to check whether the K abundances are uniform within a cluster and to investigate the behavior of [K/Fe] ratio at the relevant metallicity range of -2.5 <[Fe/H] < -1. We confirmed that [K/H] (as well as [Fe/H]) is almost homogeneous within each cluster to a precision of < ~0.1 dex, though dubiously large deviations are exceptionally seen for two peculiar stars showing signs of considerably increased turbulence in the upper atmosphere. The resulting [K/Fe] ratios are mildly supersolar by a few tenths of dex for three clusters, tending to gradually increase from ~+0.1-0.2 at [Fe/H] ~-1 to ~+0.3 at [Fe/H] ~ -2.5. This result connects reasonably well with the [K/Fe] trend of disk stars (-1 < [Fe/H]) and that of extremely metal-poor stars (-4 <[Fe/H] < -2.5). That is, [K/Fe] appears to continue a gradual increase from [Fe/H]~0 toward a lower metallicity regime down to [Fe/H]~-3, where a broad maximum of [K/Fe]~+0.3-0.4 is attained, possibly followed by a slight downturn at [Fe/H]<~-3.
We present the chemical compositions of four K giants CS 22877-1, CS 22166-16, CS22169-35 and BS 16085 - 0050 that have [Fe/H] in the range -2.4 to -3.1. Metal-poor stars with [Fe/H] < -2.5 are known to exhibit considerable star - to - star variations of many elements. This quartet confirms this conclusion. CS 22877-1 and CS 22166-16 are carbon-rich. There is significant spread for [$alpha$/Fe] within our sample where [$alpha$/Fe] is computed from the mean of the [Mg/Fe], and [Ca/Fe] ratios. BS 16085 - 0050 is remarkably $alpha$ enriched with a mean [$alpha$/Fe] of $+$0.7 but CS 22169-35 is $alpha$-poor. The aluminium abundance also shows a significant variation over the sample. A parallel and unsuccessful search among high-velocity late-type stars for metal-poor stars is described.
55 - Maria Bergemann 2016
From exploratory studies and theoretical expectations it is known that simplifying approximations in spectroscopic analysis (LTE, 1D) lead to systematic biases of stellar parameters and abundances. These biases depend strongly on surface gravity, temperature, and, in particular, for LTE vs. non-LTE (NLTE) on metallicity of the stars. Here we analyse the [Mg/Fe] and [Fe/H] plane of a sample of 326 stars, comparing LTE and NLTE results obtained using 1D hydrostatic models and averaged <3D> models. We show that compared to the <3D>NLTE benchmark, all other three methods display increasing biases towards lower metallicities, resulting in false trends of [Mg/Fe] against [Fe/H], which have profound implications for interpretations by chemical evolution models. In our best <3D> NLTE model, the halo and disc stars show a clearer behaviour in the [Mg/Fe] - [Fe/H] plane, from the knee in abundance space down to the lowest metallicities. Our sample has a large fraction of thick disc stars and this population extends down to at least [Fe/H] ~ -1.6 dex, further than previously proven. The thick disc stars display a constant [Mg/Fe] ~ 0.3 dex, with a small intrinsic dispersion in [Mg/Fe] that suggests that a fast SN Ia channel is not relevant for the disc formation. The halo stars reach higher [Mg/Fe] ratios and display a net trend of [Mg/Fe] at low metallicities, paired with a large dispersion in [Mg/Fe]. These indicate the diverse origin of halo stars from accreted low-mass systems to stochastic/inhomogeneous chemical evolution in the Galactic halo.
LTE and NLTE abundances of sulfur in 6 metal-poor giants and 61 dwarfs (62 dwarfs, including the Sun) were explored in the range of -3 lsim [Fe/H] lsim $+0.5$ using high-resolution, high signal-to-noise ratio spectra of the SI 8693.9 AA and 8694.6 AA lines observed by us and measured by Francois (1987, 1988) and Clegg et al. (1981). NLTE effects in S abundances are found to be small and practically negligible. The behavior of [S/Fe] vs. [Fe/H] exhibits a linear increasing trend without plateau with decreasing [Fe/H]. Combining our results with those available in the literature, we find that the slope of the increasing trend is -0.25 in the NLTE behavior of [S/Fe], which is comparable to that observed in [O/Fe]. The observed behavior of S may require chemical evolution models of the Galaxy, in which scenarios of hypernovae nucleosynthesis and/or time-delayed deposition into interstellar medium are incorporated.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا