Do you want to publish a course? Click here

Infrared Surface Brightness Distances to Cepheids: a comparison of Bayesian and linear-bisector calculations

63   0   0.0 ( 0 )
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have compared the results of Bayesian statistical calculations and linear-bisector calculations for obtaining Cepheid distances and radii by the infrared surface brightness method. We analyzed a set of 38 Cepheids using a Bayesian Markov Chain Monte Carlo method that had been recently studied with a linear-bisector method. The distances obtained by the two techniques agree to 1.5 pm 0.6% with the Bayesian distances being larger. The radii agree to 1.1% pm 0.7% with the Bayesian determinations again being larger. We interpret this result as demonstrating that the two methods yield the same distances and radii. This implies that the short distance to the LMC found in recent linear-bisector studies of Cepheids is not caused by deficiencies in the mathematical treatment. However, the computed uncertainties in distance and radius for our dataset are larger in the Bayesian calculation by factors of 1.4-6.7. We give reasons to favor the Bayesian computations of the uncertainties. The larger uncertainties can have a significant impact upon interpretation of Cepheid distances and radii obtained from the infrared surface brightness method.



rate research

Read More

Bayesian statistical calculations and linear-bisector calculations for obtaining Cepheid distances and radii by the infrared surface brightness method have been compared for a set of 38 Cepheids. The distances obtained by the two techniques agree to 1.5%+/-0.6% and the radii agree to 1.1%+/-0.7%. Thus the two methods yield the same distances and radii at the 2 sigma level. This implies that the short distance to the LMC found in recent linearbisector studies of Cepheids is not a result of simplifications in the mathematical approach. The computed uncertainties in distance and radius are larger in the Bayesian calculation typically by a factor of three.
We present a measurement of the Hubble constant $H_0$ from surface brightness fluctuation (SBF) distances for 63 bright, mainly early-type galaxies out to 100 Mpc observed with the Wide Field Camera 3 Infrared Channel (WFC3/IR) on the Hubble Space Telescope (HST). The sample is drawn from several independent HST imaging programs using the F110W bandpass of WFC3/IR. The majority of galaxies are in the 50 to 80 Mpc range and come from the MASSIVE galaxy survey. The median statistical uncertainty on individual distance measurements is 4%. We construct the Hubble diagram with these IR SBF distances and constrain $H_0$ using {four} different treatments of the galaxy velocities. For the SBF zero point calibration, we use both the existing tie to Cepheid variables, updated for consistency with the latest determination of the distance to the Large Magellanic Cloud from detached eclipsing binaries, and a new tie to the tip of the red giant branch (TRGB) calibrated from the maser distance to NGC4258. These two SBF calibrations are consistent with each other and with theoretical predictions from stellar population models. From a weighted average of the Cepheid and TRGB calibrations, we derive $H_0=73.3{,pm,}0.7{,pm,}2.4$ km/s/Mpc, where the error bars reflect the statistical and systematic uncertainties. This result accords well with recent measurements of $H_0$ from Type~Ia supernovae, time delays in multiply lensed quasars, and water masers. The systematic uncertainty could be reduced to below 2% by calibrating the SBF method with precision TRGB distances for a statistical sample of massive early-type galaxies out to the Virgo cluster measured with the James Webb Space Telescope.
142 - J. Storm 2005
We derive individual distances to six Cepheids in the young populous star cluster NGC1866 in the Large Magellanic Cloud employing the near-IR surface brightness technique. With six stars available at the exact same distance we can directly measure the intrinsic uncertainty of the method. We find a standard deviation of 0.11 mag, two to three times larger than the error estimates and more in line with the estimates from Bayesian statistical analysis by Barnes et al. (2005). Using all six distance estimates we determine an unweighted mean cluster distance of 18.30+-0.05. The observations indicate that NGC1866 is close to be at the same distance as the main body of the LMC. If we use the stronger dependence of the p-factor on the period as suggested by Gieren et al. (2005) we find a distance of 18.50+-0.05 (internal error) and the PL relations for Galactic and MC Cepheids are in very good agreement.
107 - Joseph B. Jensen 2015
We present new calibrations of the near-infrared surface brightness fluctuation (SBF) distance method for the F110W (J) and F160W (H) bandpasses of the Wide Field Camera 3 Infrared Channel (WFC3/IR) on the Hubble Space Telescope. The calibrations are based on data for 16 early-type galaxies in the Virgo and Fornax clusters observed with WFC3/IR and are provided as functions of both the optical (g-z) and near-infrared (J-H) colors. The scatter about the linear calibration relations for the luminous red galaxies in the sample is approximately 0.10 mag, corresponding to a statistical error of 5% in distance. Our results imply that the distance to any suitably bright elliptical galaxy can be measured with this precision out to about 80 Mpc in a single-orbit observation with WFC3/IR, making this a remarkably powerful instrument for extragalactic distances. The calibration sample also includes much bluer and lower-luminosity galaxies than previously used for IR SBF studies, revealing interesting population differences that cause the calibration scatter to increase for dwarf galaxies.
We measured high-quality surface brightness fluctuation (SBF) distances for a sample of 63 massive early-type galaxies using the WFC3/IR camera on the Hubble Space Telescope. The median uncertainty on the SBF distance measurements is 0.085 mag, or 3.9% in distance. Achieving this precision at distances of 50 to 100 Mpc required significant improvements to the SBF calibration and data analysis procedures for WFC3/IR data. Forty-two of the galaxies are from the MASSIVE Galaxy Survey, a complete sample of massive galaxies within ~100 Mpc; the SBF distances for these will be used to improve the estimates of the stellar and central supermassive black hole masses in these galaxies. Twenty-four of the galaxies are Type Ia supernova hosts, useful for calibrating SN Ia distances for early-type galaxies and exploring possible systematic trends in the peak luminosities. Our results demonstrate that the SBF method is a powerful and versatile technique for measuring distances to galaxies with evolved stellar populations out to 100 Mpc and constraining the local value of the Hubble constant.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا