Do you want to publish a course? Click here

Infrared Surface Brightness Fluctuation Distances for MASSIVE and Type Ia Supernova Host Galaxies

79   0   0.0 ( 0 )
 Added by Joseph Jensen
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We measured high-quality surface brightness fluctuation (SBF) distances for a sample of 63 massive early-type galaxies using the WFC3/IR camera on the Hubble Space Telescope. The median uncertainty on the SBF distance measurements is 0.085 mag, or 3.9% in distance. Achieving this precision at distances of 50 to 100 Mpc required significant improvements to the SBF calibration and data analysis procedures for WFC3/IR data. Forty-two of the galaxies are from the MASSIVE Galaxy Survey, a complete sample of massive galaxies within ~100 Mpc; the SBF distances for these will be used to improve the estimates of the stellar and central supermassive black hole masses in these galaxies. Twenty-four of the galaxies are Type Ia supernova hosts, useful for calibrating SN Ia distances for early-type galaxies and exploring possible systematic trends in the peak luminosities. Our results demonstrate that the SBF method is a powerful and versatile technique for measuring distances to galaxies with evolved stellar populations out to 100 Mpc and constraining the local value of the Hubble constant.



rate research

Read More

We present a measurement of the Hubble constant $H_0$ from surface brightness fluctuation (SBF) distances for 63 bright, mainly early-type galaxies out to 100 Mpc observed with the Wide Field Camera 3 Infrared Channel (WFC3/IR) on the Hubble Space Telescope (HST). The sample is drawn from several independent HST imaging programs using the F110W bandpass of WFC3/IR. The majority of galaxies are in the 50 to 80 Mpc range and come from the MASSIVE galaxy survey. The median statistical uncertainty on individual distance measurements is 4%. We construct the Hubble diagram with these IR SBF distances and constrain $H_0$ using {four} different treatments of the galaxy velocities. For the SBF zero point calibration, we use both the existing tie to Cepheid variables, updated for consistency with the latest determination of the distance to the Large Magellanic Cloud from detached eclipsing binaries, and a new tie to the tip of the red giant branch (TRGB) calibrated from the maser distance to NGC4258. These two SBF calibrations are consistent with each other and with theoretical predictions from stellar population models. From a weighted average of the Cepheid and TRGB calibrations, we derive $H_0=73.3{,pm,}0.7{,pm,}2.4$ km/s/Mpc, where the error bars reflect the statistical and systematic uncertainties. This result accords well with recent measurements of $H_0$ from Type~Ia supernovae, time delays in multiply lensed quasars, and water masers. The systematic uncertainty could be reduced to below 2% by calibrating the SBF method with precision TRGB distances for a statistical sample of massive early-type galaxies out to the Virgo cluster measured with the James Webb Space Telescope.
We use a sample of 1338 spectroscopically confirmed and photometrically classified Type Ia Supernovae (SNe Ia), sourced from the CSP, CfA, SDSS-II, and SNLS supernova samples, to examine the relationships between SNe Ia and the galaxies that host them. Our results provide confirmation with improved statistical significance that SNe Ia, after standardization, are on average more luminous in massive hosts (significance $rm > 5 sigma$), and decline more rapidly in massive hosts (significance $rm > 9sigma$) and in hosts with low specific star formation rates (significance $rm > 8sigma$). We study the variation of these relationships with redshift and detect no evolution. We split SNe Ia into pairs of subsets that are based on the properties of the hosts, and fit cosmological models to each subset. Including both systematic and statistical uncertainties, we do not find any significant shift in the best-fit cosmological parameters between the subsets. Among different SN Ia subsets, we find that SNe Ia in hosts with high specific star formation rates have the least intrinsic scatter ($rm sigma_{int}=0.08pm0.01$) in luminosity after standardization.
Recent analyses suggest that distance residuals measured from Type Ia supernovae (SNe Ia) are correlated with local host galaxy properties within a few kpc of the SN explosion. However, the well-established correlation with global host galaxy properties is nearly as significant, with a shift of 0.06 mag across a low to high mass boundary (the mass step). Here, with 273 SNe Ia at $z<0.1$, we investigate whether stellar masses and rest-frame $u-g$ colors of regions within 1.5 kpc of the SN Ia explosion site are significantly better correlated with SN distance measurements than global properties or properties measured at random locations in SN hosts. At $lesssim2sigma$ significance, local properties tend to correlate with distance residuals better than properties at random locations, though despite using the largest low-$z$ sample to date we cannot definitively prove that a local correlation is more significant than a random correlation. Our data hint that SNe observed by surveys that do not target a pre-selected set of galaxies may have a larger local mass step than SNe from surveys that do, an increase of $0.071pm0.036$ mag (2.0$sigma$). We find a $3sigma$ local mass step after global mass correction, evidence that SNe Ia should be corrected for their local mass, but we note that this effect is insignificant in the targeted low-$z$ sample. Only the local mass step remains significant at $>2sigma$ after global mass correction, and we conservatively estimate a systematic shift in H$_0$ measurements of -0.14 $textrm{km},textrm{s}^{-1}textrm{Mpc}^{-1}$ with an additional uncertainty of 0.14 $textrm{km},textrm{s}^{-1}textrm{Mpc}^{-1}$, $sim$10% of the present uncertainty.
We present optical and near-infrared ($ugriYJH$) photometry of host galaxies of Type Ia supernovae (SN~Ia) observed by the textit{Carnegie Supernova Project-I}. We determine host galaxy stellar masses and, for the first time, study their correlation with SN~Ia standardized luminosity across optical and near-infrared ($uBgVriYJH$) bands. In the individual bands, we find that SNe~Ia are more luminous in more massive hosts with luminosity offsets ranging between $-0.07 pm0.03$ mag to $-0.15pm0.04$ mag after light-curve standardization. The slope of the SN~Ia Hubble residual-host mass relation is negative across all $uBgVriYJH$ bands with values ranging between $-0.036pm 0.025$ mag/dex to $-0.097pm 0.027$ mag/dex -- implying that SNe~Ia in more massive galaxies are brighter than expected. The near-constant observed correlations across optical and near-infrared bands indicate that dust may not play a significant role in the observed luminosity offset--host mass correlation. We measure projected separations between SNe~Ia and their host centers, and find that SNe~Ia that explode beyond a projected 10 kpc have a $rm 30% to 50%$ reduction of the dispersion in Hubble residuals across all bands -- making them a more uniform subset of SNe~Ia. Dust in host galaxies, peculiar velocities of nearby SN~Ia, or a combination of both may drive this result as the color excesses of SNe~Ia beyond 10 kpc are found to be generally lower than those interior, but there is also a diminishing trend of the dispersion as we exclude nearby events. We do not find that SN~Ia average luminosity varies significantly when they are grouped in various host morphological types. Host galaxy data from this work will be useful, in conjunction with future high-redshift samples, in constraining cosmological parameters.
106 - Joseph B. Jensen 2015
We present new calibrations of the near-infrared surface brightness fluctuation (SBF) distance method for the F110W (J) and F160W (H) bandpasses of the Wide Field Camera 3 Infrared Channel (WFC3/IR) on the Hubble Space Telescope. The calibrations are based on data for 16 early-type galaxies in the Virgo and Fornax clusters observed with WFC3/IR and are provided as functions of both the optical (g-z) and near-infrared (J-H) colors. The scatter about the linear calibration relations for the luminous red galaxies in the sample is approximately 0.10 mag, corresponding to a statistical error of 5% in distance. Our results imply that the distance to any suitably bright elliptical galaxy can be measured with this precision out to about 80 Mpc in a single-orbit observation with WFC3/IR, making this a remarkably powerful instrument for extragalactic distances. The calibration sample also includes much bluer and lower-luminosity galaxies than previously used for IR SBF studies, revealing interesting population differences that cause the calibration scatter to increase for dwarf galaxies.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا